期刊文献+

交互式分割软件在肝局灶性病变超声图像分割中的初步临床应用 被引量:1

Preliminary Clinical Application of Interactive Image Segmentation Software in Focal Liver Lesions on Ultrasound Images
下载PDF
导出
摘要 【目的】评价一种基于判别式模型学习的交互式分割软件在常规灰阶超声图像中分割肝脏局灶性病变(FLL)的价值。【方法】软件分别从用户标注出前景以及背景区域采集样本点,提取样本点特征,对病灶区和病灶边缘分别建立病灶区域判别模型和病灶边缘判别模型。最后,将上述两种模型合并为组合模型,得到最优的分割结果。建立FLL理想模型并收集45例FLL患者的常规灰阶超声图像共60幅检验软件的分割能力,将软件分割结果与高年资医师手工分割结果进行比较。【结果】以高年资医师手工分割结果作为金标准,软件分割所得区域的真阳性率(TP)为91.49%,假阳性率(FP)为14.22%,面积交叠率(AOM)为81.05%;分割所得结果的平均相对误差为0.04%,与手工分割间的差异无统计学意义(P>0.05)。【结论】基于判别式模型学习的交互式分割软件可以准确的在常规灰阶超声图像中分割出FLL。 【Objective】 To evaluate the performance of interactive segmentation software in focal liver lesions(FLL)on baseline gray scale ultrasound Images. 【Methods】 The software extracted positive and negative samples according to the foreground and background scribbles respectively and quantized candidate features. Then trained discriminative region model and discriminative boundary model respectively. Finally, combined the two histograms mentioned above in the form of a histogram to obtain the ideal result. Ideal FLL models were built and sixty ultrasound images of FLL from 45 patients were selected to test the software and compare the result with the manual segmentation by experienced radiologist. 【Results】 Taking the manual segmentation as the gold standard,the true positive ratio of segmentation software was 91.49%, the false positive ratio was 14.22%, the area overlap measure was81.05%.The average relative errors was 0.04%, and there was no statistical difference in performance between the gold standard and the software segmentation(P〈0.05). 【Conclusion】 The interactive segmentation software based on discriminant model learning cansuccessfully segment FLL on baseline gray scale ultrasound images.
出处 《中山大学学报(医学科学版)》 CAS CSCD 北大核心 2016年第1期131-136,共6页 Journal of Sun Yat-Sen University:Medical Sciences
基金 广东省教育部产学研结合项目(2012B091000101) 广东省产业技术研究与开发专项资金项目(2013B060500044)
关键词 超声 计算机辅助系统 交互式分割 肝脏局灶性病灶 ultrasound computer assisted diagnosis interactive segmentation focal liver lesions
  • 相关文献

参考文献12

  • 1CLAUDON M, DIETRICH CF, CHOI BI, et al. Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver-update 2012: A WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS [J]. Ultrasound Med Biol, 2013,39(2) : 187-210.
  • 2JALALIAN A, MASHOHOR SBT, MAHMUD HR, et al. Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review [J]. Clin Imag, 2013,37(3) :420-426.
  • 3LITJENS G, DEBATS O, BARENTSZ J, et al. Computer-Aided Detection of Prostate Cancer in MRI [J]. IEEE Transactions Med Imag, 2014,33(5) : 1083- 1092.
  • 4VAN GINNEKEN B, SCHAEFER-PROKOP C M, Prokop M. Computer-aided diagnosis: how to move from the laboratory to the clinic [J]. Radiology, 2011,261 (3):719-732.
  • 5CE L, YUEN J, TORRALBA A, et al. SIFT Flow: Dense Correspondence across Scenes and Its Applications [J]. IEEE Transactions Pattern Analys Machine Intell, 2011,33(5) :978-994.
  • 6BALLANGAN C, WANG X, FULHAM M, et al. Lung tumor segmentation in PET images using graph cuts [J]. Comput Methods Programs In Biomed, 2013,109(3) : 260-268.
  • 7王伟,刘广健,林倞,王竹,杨巍,林梦溪,吕明德,郑可国.交互式分割软件在肝脏局灶性病灶CT图像中的应用初探[J].中山大学学报(医学科学版),2013,34(3):466-470. 被引量:3
  • 8BERBER T, ALPKOCAK A, BALCI P, et al. Breast mass contour segmentation algorithm in digital mammograms [J]. Comput Methods Programs Biomed, 2013,110(2) : 150-159.
  • 9MITTAL D, KUMAR V, SAXENA SC, et al. Neural network based focal liver lesion diagnosis using ultrasound images [J]. Comput Med Imag Graphics, 2011,35 (4) :315-323.
  • 10TAN T, PLATEL B, TWELLMANN T, et al. Evaluation of the effect of computer-aided classification of benign and malignant lesions on reader performance in automated three-dimensional breast ultrasound[J]. Acad Radiol, 2013, 20( 11 ) : 1381-1388.

二级参考文献10

  • 1Van Ginneken B, Schaefer-Prokop CM, Prokop M.Computer-aided diagnosis: how to move from the laboratory to the clinic [ J ]. Radiology, 2011, 261 (3) : 719-732.
  • 2Yang W, Wang XL, Lin L. Interactive CT image segmentation with online discriminative learning [C]. Image Processing (ICIP), 2011 18th IEEE International Conference, 2011,425-428.
  • 3Beichel R, Bornik A, Bauer C, et al. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods [J]. Med Phys, 2012, 39(3) : 1361-1373.
  • 4Zhang X, Tian J, Xiang D, et al. Interactive liver tumor segmentation from ct scans using support vector classification with watershed [C]. Conf Proc IEEE Eng Med Biol Soc, 2011, 6005-6008.
  • 5Boykov YY, Jolly MP. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images [C]. 2001, Proceedings Eighth IEEE International Conference, 2011, 105-112.
  • 6Esneauh S, Hraiech N, Delabrousse E, et al. Graph cut liver segmentation for interstitial ultrasound therapy [ C ]. Engineering in Medicine and Biology Society, 29th Annual International Conference of the IEEE, 2007, 5247-5250.
  • 7Caselles V, Kimmel R, Sapiro G. Geodesic active contours [C]. Computer Vision, Fifth International Conference, 1995, 694-699.
  • 8刘瑛,吴宁,唐威.计算机辅助诊断的三维体积测量技术在实性肺结节CT随诊中的价值[J].中华放射学杂志,2009,43(4):351-355. 被引量:8
  • 9张惠茅,乔峰利,吕忠文.计算机辅助检测在CT结肠成像中的应用[J].中国医学影像技术,2010,26(1):171-174. 被引量:2
  • 10司丽芳,刘小娟,杨开颜,史瑞华,蒋涛,翟仁友.计算机辅助检测系统对数字化乳腺X线图像检测的可重复性[J].中国医学影像技术,2011,27(12):2472-2475. 被引量:3

共引文献2

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部