摘要
弹性退休制是应对老龄化的社会养老保险制度改革未来选择之一,因此研究该制度下的退休年金精算问题具有重要的理论与现实意义.本文运用二项分布拟合退休年龄,带跳的非连续随机微分方程拟合利率,带跳Feller过程拟合死力强度,分析了弹性退休制下退休年金寿险精算函数,给出了生命年金、退休年金、退休年金二阶矩精算现值与均衡净保费的表达式,并利用模型对相关精算函数进行模拟测算.这些公式为弹性退休制下的保险金、均衡保险费等提供了精算分析的理论基础,从而为我国养老保险制度改革的制度设计、防控养老保险帐户风险提供了依据.
The flexible retirement system is one of the options of society endowment insurancesystem to deal with the aging. Therefore, the pension annuity under the system has importantimpact on theory and practice. This paper investigates the actuarial function of retirementannuity under the flexible retirement system. Under the hypothesis that the distribution ofthe retirement age is binomial distribution, the interest rate is decided by the discontinuousstochastic differential equations with jumps, and the death intensity is decided by Feller processwith a jump. The formulas of the retirement annuity are proposed, including the life annuities,insurance, net premiums and insurance actuarial present value of second moment, and the simulativedestimation for the relevant actuarial functions is derived. These formulas provide thebasis of the actuarial analysis of insurance and balance insurance under the flexible retirementsystem, thus they can be applied for the old-age insurance system and control of risk pensionaccount in China.
出处
《工程数学学报》
CSCD
北大核心
2016年第2期111-120,共10页
Chinese Journal of Engineering Mathematics
基金
教育部人文社会科学研究西部和边疆地区项目(13xjc910001)
重庆市教委科技项目(KJ1400619)~~
关键词
弹性退休制
退休年金
精算模型
flexible retirement system
retirement annuity
actuarial models