期刊文献+

基于Gabor特征与投影字典对学习的人脸识别算法 被引量:2

A face recognition algorithm based on Gabor feature and projective dictionary pair learning
下载PDF
导出
摘要 为了提高人脸的识别率及其识别速度,提出了一种基于Gabor特征与投影字典对学习的人脸识别算法。由于Gabor特征对表情、光照和角度等变化具有较强的鲁棒性,首先提取人脸图像多方向多尺度的Gabor局部特征,并将经主成分分析降维后的增广Gabor特征作为训练数据,代替原始的训练样本。然后,根据训练数据同时学习综合字典与分析字典,综合字典具有重构能力,分析字典可以快速求出系数矩阵。最后,根据各类别的重构误差进行分类,以达到人脸识别的目的。在扩展的YaleB、ORL和AR人脸数据库上的实验结果表明,提出的算法不仅具有较高的识别率,而且能够有效地提高识别速度。 To improve the recognition rate and speed of face recognition,we propose a face recognition algorithm based on Gabor feature and projective dictionary pair learning.We first extract the Gabor features of the image at multiple scales and orientations,which shows significant robustness to the variations in expression,illumination and angle.The augmented Gabor features with reduced dimension are achieved through principle component analysis,which constructs a new training data to replace original training samples.Then a synthesis dictionary with reconstruction capability and an analysis dictionary with the capability of quickly obtaining representation coefficients are learned jointly during the training phase.The face is eventually identified by the reconstructed errors.Experimental results on the extended YaleB,ORL and AR database show that the proposed algorithm can get a high recognition rate and improve the recognition speed efficiently.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第3期542-548,共7页 Computer Engineering & Science
基金 国家自然科学基金(61402053) 湖南省教育厅优秀青年项目(12B003) 湖南省交通厅科技计划(201334) 2015年湖南省研究生科研创新项目(CX2015B369)
关键词 人脸识别 GABOR特征 综合字典 分析字典 face recognition gabor feature synthesis dictionary analysis dictionary
  • 相关文献

参考文献1

二级参考文献14

  • 1张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 2Wright J,Yang A Y,Ganesh A. Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,(02):210-227.doi:10.1109/TPAMI.2008.79.
  • 3Yang M,Zhang L,Yang J. Metaface learning for sparse representation based face recognition[A].Hong Kong,China:IEEE Signal Processing Society,2010.1601-1604.
  • 4Ramírez I,Sprechmann P,Sapiro G. Classification and clustering via dictionary learning with structured incoherence and shared features[A].California,USA:IEEE Computer Society,2010.3501-3508.
  • 5Zhang Q,Li B X. Discriminative K-SVD for dictionary learning in face recognition[A].California,USA:IEEE Computer Society,2010.2691-2698.
  • 6Mailhé B,Plumbley M D. Dictionary learning with large step gradient descent for sparse representations[A].Tel-Aviv,Israel:Springer,2012.231-238.
  • 7Aharon M,Elad M,Bruckstein A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,(11):4311-4322.doi:10.1109/TSP.2006.881199.
  • 8Jiang Z L,Lin Z,Davis L S. Learning a discriminative dictionary for sparse coding via label consistent K-SVD[A].Colorado Springs,USA:IEEE Computer Society,2011.1697-1704.
  • 9Ramirez I,Sapiro G. Sparse coding and dictionary learning based on the MDL principle[A].Prague,Czech Republic:IEEE,2011.2160-2163.
  • 10Yang M,Zhang L,Feng X C. Fisher discrimination dictionary learning for sparse representation[A].Barcelona,Spain:IEEE,2011.543-550.

共引文献22

同被引文献35

  • 1李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 2Wang Jinjun, Yang Jianchao, Yu Kai, et al. Locality-con-strained linear coding for image classification [ C ] // IEEEConference on In Computer Vision and Pattern Recognition(CVPR). 2010:3360-3367.
  • 3Gao Shenghua, Tsang Ivor W, Chia Liang-Tien, et al. Lo-cal features are not lonely-Laplacian sparse coding for im-age classification [ C ] // 23 rd IEEE Conference on Comput-er Vision and Pattern Recognition ( CVPR). 2010:3555-3561.
  • 4Li Xi, Hu Weiming, Shen Chunhua, et al. Context-awarehypergraph construction for robust spectral clustering[J].IEEE Transactions on Knowledge & Data Engineering,2014,26(10):2588-2597.
  • 5Sunderrajan S, Manjunath B S. Context-aware hypergraphmodeling for re-identification and summarization [ J ]. IEEETransactions on Multimedia, 2016,18(1) :51-63.
  • 6Scholkopf B,Platt J,Hofmann T. Learning with hyperg-raphs :Clustering, classification, and embedding [ C ]//Advances in Neural Information Processing Systems. 2006,19:1601-1608.
  • 7Lee H, Battle A, Raina R, et al. Efficient sparse codingalgorithms [ C ] // Advances in Neural Information Process-ing Systems. 2006 : 801-808.
  • 8Wright J, Yang A Y,Ganesh A, et al. Robust face recog-nition via sparse representation[ J]. IEEE Transactions onPattern Analysis & Machine Intelligence,2009, 31 (2 ):210-227.
  • 9Yang Meng, Zhang Lei,Yang Jian, et al. Metaface learn-ing for sparse representation based face recognition[ C]//IEEE International Conference on Image Processing. 2010:1601-1604.
  • 10吴巾一,周德龙.人脸识别方法综述[J].计算机应用研究,2009,26(9):3205-3209. 被引量:83

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部