期刊文献+

基于流形结构的多聚类中心近邻传播聚类算法

Manifold structure based multi-exemplar affinity propagation
下载PDF
导出
摘要 多聚类中心近邻传播聚类算法(MEAP),在处理任意形状具有流形分布结构的数据时,往往得不到理想的聚类结果。为此,基于流形学习的思想,设计了一种全新的相似性度量,该相似性度量能够扩大位于同一流形中数据点间的相似性,同时缩小处于不同流形上数据点间的相似性,从而使得相似性矩阵能够准确地反映数据集内在的流形分布结构。将该相似性度量与MEAP相结合,提出基于流形结构的多聚类中心近邻传播聚类算法MS-MEAP(Manifold Structure based Multi-Exemplar Affinity Propagation),从而有效地拓展了算法处理任意形状具有流形分布结构数据集的能力,同时提高了算法的运行效率。在人工数据集与USPS手写体数据集上进行了实验,仿真实验结果及算法有效性分析证明,MS-MEAP算法相比于原算法在处理任意形状具有流形分布结构的数据时,具有更好的聚类性能。 When dealing with arbitrary shape data set with manifold structure, multi-exemplar affinity propagation cannot obtain good clustering results. To overcome this shortcoming, this paper designs a brand new similarity measure based on the idea of manifold learning. This similarity can amplify the similarity between data points of the same manifold and reduce the similarity between data points of different manifolds. As a result, the similarity matrix can reflect the internal manifold structure of the data set precisely. Based on this similarity matrix, this paper proposes the novel manifold structure based multi-exemplar affinity propagation, which can solve the problem mentioned above effectively and also improve the efficiency of this algorithm. It obtains promising results both on artificial datasets and USPS handwritten digits datasets. The simulation results show that the new method outperforms traditional MEAP algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第6期67-73,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61305017 No.60975027) 江苏省自然科学基金(No.BK20130154) 江苏高校优势学科建设工程资助项目
关键词 近邻传播聚类 多聚类中心近邻传播聚类 基于密度的聚类 流形结构 相似性度量 affinity propagation multi-exemplar affinity propagation density-based clustering manifold structure similarity measure
  • 相关文献

参考文献17

  • 1贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:226
  • 2孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1076
  • 3Frey B J,Dueck D.Clustering by passing messages between data points[J].Science,2007,315(5814):972-976.
  • 4Zhou Yong,Xing Yan.Summary of affinity propagation[J].Advanced Materials Research,2011,268(270):811-816.
  • 5Wang Changdong,Lai Jianhuang,Ching Y,et al.Multiexemplar affinity propagation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2013,35(9):2223-2237.
  • 6Givoni I E,Frey B J.A binary variable model for affinity propagation[J].Neural Computation,2009,21(6):1589-1600.
  • 7Jain A K.Data clustering:50 years beyond k-means[J].Pattern Recognition Letters,2010,31(8):651-666.
  • 8Avi H I,Mieghem J,Rub L.Multiple subclass pattern recognition:a maximin correlation approach[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1995,17(4):418-431.
  • 9Liu Ming,Jiang Xin,Kot A C.A multi-prototype clustering algorithm[J].Pattern Recognition,2009,42(3):689-698.
  • 10Zhou Ding,Bousquet O.Learning with local and global consistency[C]//Proceedings of Advances in Neural Information Processing Systems,Cambridge,2004:372-378.

二级参考文献70

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Frey B J and Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976.
  • 3Givoni I E and Frey B J. A binary variable model for affinity propagation. Neural Computation, 2009, 21(6): 1589-1600.
  • 4Jia Sen, Qian Yun-tao, and Ji Zhen, Band hyperspectral imagery using affinity. Proceedings of the 2008 Digital Image Techniques and Applications, Canberra, ACT selection for Propagation. Computing: 1-3.12.2008:137-141.
  • 5Gang Li, Lei brain MR International (ISCAS 2009) Guo, and Liu Tian-ming, et at. Grouping of images via affinity propagation. IEEE Symposium on Circuits and Systems, 2009 Taipei, Taiwan, 5.24. 2009: 2425-2428.
  • 6Dueck D, Frey B J, and Jojic N, et al. Constructing treatment portfolios using affinity propagation[C]. Proceedings of 12th Annual International Conference, RECOMB 2008. Singapore. 3.30-4.2, 2008: 360-371.
  • 7Leone M, Sumedha, and Weigt M. Clustering by soft-constraint affinity propagation: applications to gene- expression data. Bioinformatics, 2007, 23(20): 2708-2715.
  • 8Alexander Hinneburg and Daniel A Keim. A general approach to clustering in large databases with noise. Knowledge and Information Systems, 2003, 5(4): 387-415.
  • 9Little M A, McSharry P E, Hunter E J, and Lorraine O. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Transactions on Biomedical Engineering, 2009, 56(4): 1015-1022.
  • 10Zhang W,Proc 23rd VL DB Conf,1997年,186页

共引文献1479

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部