期刊文献+

改进熵值法和马尔科夫链的组合预测及应用 被引量:5

Combination of improved entropy method and Markov chain prediction and application
下载PDF
导出
摘要 机场货邮吞吐量是机场决策规划和发展的基础。传统的单一预测由于精确度低等各种缺陷,已不能满足越来越高的要求,为了准确合理预测航空货邮吞吐量,提出了在各单一预测模型的基础上,利用熵值法建立组合预测模型的方法,并对西安咸阳国际机场货邮吞吐量进行组合预测。实例表明,熵值法组合预测模型与单一预测模型相比,实用性更强,预测精度也有所提高。选用马尔科夫链模型对熵值法组合模型预测结果进行修正处理,增加预测结果的可信度。 The airport cargo throughput is the foundation of airport decision planning and development. The traditional single forecast due to the low precision and other defects, can not meet the higher and higher requirements. In order to accurately predict aviation cargo reasonable throughput, on the basis of the every single forecast model, combination forecast model is established by using the entropy method, and the throughput of cargo in Xi'an Xianyang international airport is done combination forecast. Instances show that the entropy method combined forecasting model compared to single prediction model is more practical, and the prediction accuracy is also improved. With the markov chain model, the prediction results of entropy value method combination model are modified,increasing the reliability of prediction results.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第6期122-126,共5页 Computer Engineering and Applications
基金 陕西省自然科学基金(No.2012GQ8050)
关键词 灰色GM(1 1)模型 组合预测 熵值法 马尔科夫链 grey forecasting method combination forecasting entropy method Markov chain model
  • 相关文献

参考文献12

二级参考文献83

共引文献152

同被引文献65

  • 1刘常昱,冯芒,戴晓军,李德毅.基于云X信息的逆向云新算法[J].系统仿真学报,2004,16(11):2417-2420. 被引量:188
  • 2DEANGELO H,DEANGELO L,STULZ R M.Dividend policy and the earned/contributed capital mix:a test of the life-cycle theory[J].Journal of Financial Economics,2006,81(2):227-254.
  • 3LIN P C,LIN C H,HO I L.Regional convergence or divergence in China?Evidence from unit root tests with breaks[J].The Annals of Regional Science,2013,50(1):223-243.
  • 4GENSBITTEL F,RENAULT J.The value of Markov chain Games with incomplete information on both sides[J].Mathematics of Operations Research,2015,40(4):820-841.
  • 5ABERER A J,STAMATAKIS A,RONQUIST F.An efficient independence sampler for updating branches in Bayesian Markov chain Monte Carlo sampling of phylogenetic trees[J].Systematic Biology,2016,65(1):161-176.
  • 6STRAUSS A.Numerical and monitoring based Markov chain approaches for the fatigue life prediction of concrete structures[J].Engineering Structures,2016,112:265-273.
  • 7ANDRIEU C,VIHOLA M.Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms[J].The Annals of Applied Probability,2015,25(2):1030-1077.
  • 8LI L,SUN L J,NING G B.Deterioration prediction of urban bridges on network level using Markov-Chain model[J].Mathematical Problems in Engineering,2014,2014(7):1-10.
  • 9刘长义.中小企业R&D战略联盟合作伙伴选择研究[J].技术经济,2008,27(5):48-51. 被引量:6
  • 10刘继,邓贵仕,那日萨.贝叶斯反馈云模型的分析与设计[J].系统工程理论与实践,2008,28(7):138-143. 被引量:12

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部