期刊文献+

带权重条件嫡的属性约简算法 被引量:3

Attribute Reduction Algorithm Based on Conditional Entropy with Weights
下载PDF
导出
摘要 粗糙集理论中最重要的内容之一就是属性约简问题,现有的许多属性约简算法往往是基于属性对分类的重要性,如果属性约简的结果能满足用户实际需要的信息,如成本、用户的偏好等,那么约简理论将会有更高的实用价值。基于此,从信息熵的角度定义了带权重的属性重要性,然后重新定义了基于带权重的属性重要性的熵约简算法。最后通过实际例子说明,与基于属性重要性的嫡约简算法相比,考虑权重的算法更加符合用户的实际需求。 Attribute reduction is one of the most important contents of rough set theory,and many of the existing reduction algorithms are often based on attribute importance.If the result of attribute reduction can meet the information of actual need,such as the costs and users' preference,etc,the theory of reduction will have higher practical value.So,this paper defines the attribute importance with weights based on information entropy,then defines attribute entropy reduction algorithm which is based on the attribute importance with weights.Finally,the experimental results show that,compared with the entropy reduction algorithm based on the attribute importance,the algorithm with weights is more coincident with the actual requirements of users.
出处 《计算机科学与探索》 CSCD 北大核心 2016年第3期445-450,共6页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61170107 61300153 61300121 河北省自然科学基金Nos.A2013208175 A2014205157 河北省高校创新团队领军人才培育计划项目No.LJRC022~~
关键词 粗糙集 条件熵 加权属性重要性 熵约简 rough set condition entropy weighted attribute importance entropy reduction
  • 相关文献

参考文献15

  • 1Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 1115: 341-356.
  • 2Pawlak Z, Grzymala-Busse J, Slowinski tL et al. Rough sets[J]. Communications of the ACM, 1995, 38(11): 89- 95.
  • 3Lingras P J, Yao Yiyu. Data mining using extensions of the rough set model[J]. Journal of the American Society for Infor- mation Science, 1998, 49(5): 415-422.
  • 4Tsumoto S. Automated discovery of positive and negative knowledge in clinical databases based on rough set model[J]. IEEE EMB Magazine, 2000, 19(4): 56-62.
  • 5. Ziako W C. Rough sets: trends, challenges, and prospects: rough sets and current trends in computing[M]. Berlin: Springer-Verlag, 2001.
  • 6Duentsch I, Gediga G. Uncertainty measures of rough set prediction[J]. Artificial Intelligence, 1998, 106(1): 109-137.
  • 7Dai Jian\|hua 1,2 , Li Yuan\|xiang 1,2 ,Liu Qun 3 1. State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 2. School of Computer, Wuhan University, Wuhan 430072, Hubei, China 3. School of Computer Science,.A Hybrid Genetic Algorithm for Reduct of Attributes in Decision System Based on Rough Set Theory[J].Wuhan University Journal of Natural Sciences,2002,7(3):285-289. 被引量:6
  • 8Du Yong, Hu Qinghua, Zhu Pengfei, et al. Rule learning for classification based on neighborhood covering reduction[J]. Information Sciences, 2011, 181 (24): 5457- 5467.
  • 9Dai Jianhua, Xu Qing. Attribute selection based on informa- tion gain ratio in fuzzy rough set theory with application to tumor classification[J]. Applied Soft Computing, 2013, 13 (1): 211-221.
  • 10Xu Weihua, Li Yuan, Liao Xiuwu. Approaches to attribute reductions based on rough set and matrix computation in in- consistent ordered information systems[J]. Knowledge Based Systems, 2012, 27: 78-91.

二级参考文献7

共引文献598

同被引文献28

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部