期刊文献+

STRONG PREDICTOR-CORRECTOR METHODS FOR STOCHASTIC PANTOGRAPH EQUATIONS 被引量:5

STRONG PREDICTOR-CORRECTOR METHODS FOR STOCHASTIC PANTOGRAPH EQUATIONS
原文传递
导出
摘要 The paper introduces a new class of numerical schemes for the approximate solutions of stochastic pantograph equations. As an effective technique to implement implicit stochastic methods, strong predictor-corrector methods (PCMs) are designed to handle scenario simulation of solutions of stochastic pantograph equations. It is proved that the PCMs are strong convergent with order 1/2.Linear M^-stabiiity of stochastic pantograph equationsand the PCMs are researched in the paper. Sufficient conditions of MS-unstability of stochastic pantograph equations and MS-stability of the PCMs are obtained, respectively. Numerical experiments demonstrate these theoretical results. The paper introduces a new class of numerical schemes for the approximate solutions of stochastic pantograph equations. As an effective technique to implement implicit stochastic methods, strong predictor-corrector methods (PCMs) are designed to handle scenario simulation of solutions of stochastic pantograph equations. It is proved that the PCMs are strong convergent with order 1/2.Linear M^-stabiiity of stochastic pantograph equationsand the PCMs are researched in the paper. Sufficient conditions of MS-unstability of stochastic pantograph equations and MS-stability of the PCMs are obtained, respectively. Numerical experiments demonstrate these theoretical results.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2016年第1期1-11,共11页 计算数学(英文)
关键词 Stochastic pantograph equation Predictor-corrector method MS-convergence MS-stability. Stochastic pantograph equation, Predictor-corrector method, MS-convergence,MS-stability.
  • 相关文献

参考文献3

二级参考文献28

  • 1范振成,刘明珠.线性随机比例方程的渐近均方稳定性(英文)[J].应用数学,2007,20(3):519-523. 被引量:3
  • 2Cao W,Liu M,Fan Z. MS-stability of the Euler-Maruyama method for stochastic differential dalay equations[J]. Appl. Math. Comp. , 2004,159:127-135.
  • 3Liu M, Cao W,Fan Z. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation[J]. J. Comp. Appl. Math. ,2004,170,255-268.
  • 4Baker C T H, Buckwar E. On Halanay-type analysis of exponential stability for the 0- Maruyama method for stochastic delay differential equations[J]. Stochastics and Dynamics,2005,5:201-209.
  • 5Baker C T H ,Buekwar E. Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions,of stochastic delay differential equations[J]. Comput. Appl. Math. , 2005,184: 404-427.
  • 6Wang Z,Zhang C. An analysis of stability of Milstein method for stochastic differential equations with de- lay[J]. Computers and Mathematics with Applications, 2006,51 : 1445- 1452.
  • 7Baker C T H,Buckwar E.Continuous θ-methods for the stochastic pantograph equation[J].Electron.Trans.Numer.Anal.,2000,11:131--151.
  • 8Higham D J.Mean-square and asymptotic stability of the stochastic theta method[J].SIAM J.Numer.Anal.,2000,38:753--769.
  • 9Kloeden P E,Platen E.Numerical Solution of Stochastic Differential Equations[M].Berlin:Springer,1992.
  • 10Liu M Z,Cao W R,Fan Z C.Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation[J].J.Comput.Appl.Math.,2004,170:255--268.

共引文献5

同被引文献13

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部