期刊文献+

基于人工神经网络方法的通信基站能耗标杆建立与分析 被引量:2

Establishment and Analysis of Energy Consumption Benchmark for Communication Base Station Based on Artificial Neural Network
下载PDF
导出
摘要 随着通信基站用电量的不断增加,基站耗能的管控变得越来越重要,基于对公共建筑建立能耗标杆的方法的研究,进行方法引用从而建立通信基站能耗标杆。引用人工神经网络方法来预测基站全年能耗,预测精度达到最大相对误差为7.55%的水平,同时,根据人工神经网络的重要性分析得到影响基站能耗的最重要因素分别为主设备功率、空调能效比和气温,从而给出节能应从这三方面抓起的管理建议。 With the increasing demand of power in communication base stations,energy consumption management becomes more important. Based on the method used in establishing benchmark in public building field,energy consumption benchmark of communication base station is built. Artificial neural network method is used to predict annual power consumption of base stations,and has better prediction accuracy with 7. 55% of relative error. The most important factors that affecting energy consumption are the power of main devices,power usage effectiveness and temperature,based on which,suggestions on energy management are given.
作者 杨天剑 张静
出处 《北京邮电大学学报(社会科学版)》 CSSCI 2015年第6期58-63,共6页 Journal of Beijing University of Posts and Telecommunications(Social Sciences Edition)
关键词 能耗标杆 人工神经网络 通信基站 energy consumption benchmark artificial neural network communication base station
  • 相关文献

参考文献13

  • 1工信部运行监测协调局.2014年我国通信业经济运行状况分析[EB/OL].(2015-01-21)[2015-06-05].http://www.cnii.com.cn/wlkb/rmydb/content/2015-01/21/content_1520113.htm.
  • 2张英杰,章兢,刘文强,姚珺.通信行业能耗现状分析与节能战略思考[J].电信科学,2011,27(10):103-109. 被引量:19
  • 3帅农村,郑辑杰,辛冰,葛轶敏.GSM移动通信基站能耗模型研究[J].移动通信,2011,35(2):87-90. 被引量:8
  • 4马国远,田昕,周峰.利用自然冷源为通讯基站降温的模拟分析[J].北京工业大学学报,2012,38(3):410-416. 被引量:7
  • 5Chen Yi, Zhang Yufang, Meng Qinglin. Study of ventilation cooling technology for telecommunication base stations: control strategy and application strategy [ J ]. Energy and Buildings, 2012 (50) : 212-218.
  • 6Gao Xuefeng, Malkawi A. A new methodology for building energy performance benchmarking: an approach based on intelligent clustering algorithm [ J ]. Energy and Buildings, 2014 (84) : 607-616.
  • 7Hong S M, Paterson G, Burman E. A comparative study of benchmarking approaches for non-domestic buildings : part 1- top- down approach [ J ]. International Journal of Sustainable Built Environment, 2013, 2 (2) : 119-130.
  • 8Burman E, Hong S M, Paterson G. A comparative study of benchmarking approaches for non-domestic buildings : Part 2- bot- tom-up approach[ J]. International Journal of Sustainable Built Environment, 2014, 3 (2): 247-261.
  • 9Martin C. Generating low-cost national energy benchmarks: a case study in commercial buildings in Cape Town, South Africa [J]. Energy and Buildings, 2013(64) : 26-31.
  • 10Wang Shengwei, Yan Chengchu, Xiao Fu. Quantitative energy performance assessment methods for existing buildings [ J ]. Energy and Buildings, 2012(55) : 873-888.

二级参考文献25

共引文献27

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部