期刊文献+

基于混沌分形理论的滚动轴承微小故障诊断 被引量:14

Slight fault diagnosis for rolling bearing based on chaos and fractal theory
下载PDF
导出
摘要 为提取轴承微小故障的故障特征,提出一种基于混沌分形理论的滚动轴承故障诊断方法。通过计算滚动轴承振动信号的最大Lyapunov指数,进行轴承运动的混沌识别;然后,对具有混沌特性的振动信号,计算关联维数和盒维数作为故障诊断的状态特征量。当关联维数不能明显区别轴承故障时,利用关联维数与盒维数相结合的方法判别故障;最后,选取滚动轴承滚动体、内圈、外圈存在微小故障和较明显故障以及正常状态7种工况的振动信号进行实验。研究结果表明:该方法能准确提取故障特征并完成滚动轴承的微小故障诊断。该方法为滚动轴承故障诊断提供了新的有效途径。 In order to extract the fault features of bearing slight fault, a new fault diagnosis method for rolling bearing based on chaos and fractal theory was put forward. Firstly, the largest lyapunov exponent of rolling bearing vibration signal was calculated to identify whether the bearing running gets in chaotic or not. Then, the correlation dimension and box dimension of the chaotic signal were calculated as the state character for fault diagnosis. When the correlation dimension can't obviously separate bearing faults, the box dimension is used to combine with it for fault diagnosis. Finally, the inner ring, outer ring and rolling element signal of bearing in slight fault, serious fault and the normal state signal in total 7 kinds of conditions were selected to do the experiments. The experimental results show that the method can accurately extract fault feature and complete slight fault diagnosis of rolling bearing. The proposed method provides a new effective approach to the fault diagnosis of rolling bearing.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第2期640-646,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51169007) 云南省科技计划项目(2013DH034 2012CA022 2011CI017)~~
关键词 滚动轴承 微小故障诊断 LYAPUNOV指数 关联维数 盒维数 rolling bearing slight fault diagnosis the largest Lyapunov exponent correlation dimension box dimension
  • 相关文献

参考文献14

  • 1PATRICIA H R, JESUS A B, FERRER M A, et al. Application of the Teager-Kaiser energy operator in bearing fault diagnosis[J]. ISA Transaction, 2013, 52(2): 278-284.
  • 2ZHANG Q H, BASSEVILLE M, BENVENISTE A. Early warning of slight changes in systems[J]. Automatica, 1994, 30(1) 95-113.
  • 3何正嘉,陈雪峰,段晨东,陈鹏,丰田利夫.早期故障预示的若干方法及应用[J].振动工程学报,2004,17(z1):309-312. 被引量:4
  • 4顾晓辉,杨绍普,刘永强,廖英英.表面波纹度对滚动轴承-转子系统非线性振动的影响[J].振动与冲击,2014,33(8):109-114. 被引量:17
  • 5刘永斌,冯志华,张平,龙潜,侯树明,孔凡让.基于混沌动力学的滚动轴承故障诊断研究[J].自动化仪表,2007,28(6):31-34. 被引量:6
  • 6马晋,江志农,高金吉.基于混沌分形理论的特征提取技术在气阀故障诊断中应用[J].振动与冲击,2012,31(19):26-30. 被引量:13
  • 7LI B, ZHANG P L, MI S S, et al. Multi-scale fractal dimension based on morphological covering for gear fault diagnosis[J]. Journal of Mechanical Engineering, 2011,225(9): 2242-2249.
  • 8WANG Xia, LIU Changwen, BI Fengrong, et al. Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension[J]. Mechanical Systems and Signal Processing, 2013, 41(1/2): 581-598.
  • 9PEI Jtm, ZHOU Fengxing, MENG Zhihua, et al. Rolling bearing fault diagnosis study based on chaos and fractal theory[C]//2010 International Conference on Mechanic Automation and Control Engineering (MACE2010). Piscataway, United States: IEEE Computer Society, 2010: 5295-5297.
  • 10KILBAS A, SRIVASTAVA H, TRUJILLO J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier Science B V, 2006: 347-350.

二级参考文献32

共引文献36

同被引文献126

引证文献14

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部