期刊文献+

紧框架算法下的语音信号压缩感知

Speech Compressed Sensing Based on Tight Frame Algorithm
下载PDF
导出
摘要 压缩感知,近年来在信号处理领域取得非常多的成果。在基于压缩感知进行语音压缩重构时,测量矩阵在重构原始信号的过程中发挥着重要的作用.为了提高重构语音质量,从观测矩阵着手,基于紧框架算法构造测量矩阵,并与传统的高斯随机观测矩阵进行重构语音质量的比较。实验结果表明,紧框架矩阵相对于传统常用的高斯随机矩阵,在语音重构过程中取得更好的效果。 Compressed sensing is a research hotspot making so much progress in the field of signal processing. We know that the observation matrix plays an important role in the reconstruction of original speech signal. In order to improve the quality of reconstructed speech, starts from the observation matrix, constructs observation matrix based on tight frame algorithm and compares with the traditional gaussian random observation matrix on reconstructing of original speech. The experiments' results show that the tight frame matrix, compared with the traditional gaussian random matrix achieves better effect in the process of speech re-construction.
出处 《现代计算机》 2016年第5期31-35,共5页 Modern Computer
关键词 语音 压缩感知 紧框架 观测矩阵 高斯随机矩阵 Speech Compressed Sensing Tight Frame Observation Matrix Gaussian Random Matrix
  • 相关文献

参考文献8

二级参考文献276

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2黄永东,程正兴.α带小波紧框架的显式构造方法[J].数学物理学报(A辑),2007,27(1):7-18. 被引量:15
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献1107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部