期刊文献+

三维紧支撑正交多尺度函数的构造

Three Dimensional Construction of Compactly Supported Orthogonal Multiscalling Functions
下载PDF
导出
摘要 本文详细给出了三维紧支撑正交的多尺度函数的构造方法.这种由正交单尺度函数构造的多尺度函数不是唯一的,但其平移伸缩构成的空间与相应单尺度函数的平移伸缩生成的子空间相同. This article originally constructed two dimensional construction of compactly supported orthogonal multiscaling functions method is extended to three dimensional detail is given three dimensional construction of compactly supported orthogonal multiscaling functions. The orthogonal multiscaling functions consisting of scalable subspace generated by the sane.
出处 《山西师范大学学报(自然科学版)》 2016年第1期6-13,共8页 Journal of Shanxi Normal University(Natural Science Edition)
基金 新疆自治区大学生创新训练项目资助(201510758084) 新疆农业大学校前期资助课题(XJAU201418)
关键词 三维正交的单尺度函数 三维正交的多尺度函数 滤波器 three-dimensional orthogonal scaling functions three dimensional orthogonal multiscaling functions filters
  • 相关文献

参考文献9

  • 1Yang Shouzhi, Gheng Zhengxing, Wang Hongyong. Construction of biorthogonal muhiwavelets [ J ]. J Math Anal Appl,2002,276:1 - 12.
  • 2Strela V. Multiwavelets:Theory and applications[ D]. Massachusetts Institute of Technology, 1996.
  • 3Turcajova R. An algorithm for the construction of symmetry orthogonal multiwavelets [ J ]. SIAM Matrix Anal Appl,2003,25 (2) :533 - 550.
  • 4Efromovich S, Lakey J, Pereyia M C, et al. Date-driven and optimal denoising of a signal using muhiwavelets [ J ]. IEEE Trans Signal Processing, 2002,50(12) :315 -327.
  • 5Chui C K, Lian J. A study on orthonormal muhiwavelets[ J]. Appl Namer Math, 1996,20:273 - 298.
  • 6Geronimo J S, Hardin D P, Massopust P R. Fractal functions and wavelet expansions based on several scaling functions [ J ]. J Approx Theory, 1994,20:373 - 401.
  • 7Donovan G, Geronimo J S, Hardin D P. Construction of orthogonal wavelets using fractal interpolation fanction [ J ]. SIAM J Math Anal, 1996,27 : 1158 - 1192.
  • 8杨守志,李尤发.具有高逼近阶和正则性的双向加细函数和双向小波[J].中国科学(A辑),2007,37(7):779-795. 被引量:30
  • 9谢长珍.双向正交的加细函数及其对应双向小波的构造[J].宁夏大学学报(自然科学版),2009,30(1):9-11. 被引量:2

二级参考文献25

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部