期刊文献+

离散SEIR传染病模型的全局稳定性分析

The Global Stability of a Discrete SEIR Epidemic Model
下载PDF
导出
摘要 本文主要研究了一类具有双线性发生率的离散SEIR传染病模型的动力学性态.利用再生矩阵的方法定义了模型的基本再生数,通过归纳法得到了模型解的非负性和有界性.当R0<1时,模型存在唯一的无病平衡点并且是全局渐近稳定的.当R0>1时,模型存在无病平衡点和唯一的地方病平衡点,通过构造合理的Lyapunov函数证明了地方病平衡点是全局渐近稳定的. The dynamical behavior of discrete SEIR epidemic model with bilinear incidence is studied. The basic reproductive number of the model is defined by using the regeneration matrix. The nonnegativity and boundless of solutions are analyzed by inductive method. It is proved that the disease-free equilibrium is globally asymptotically stable if R0 1,and the endemic equilibrium is globally asymptotically stable if R0 1 by constructing reasonable Lyapunov function. Numerical simulations are done to show our theoretical results and to demonstrate the complicated dynamics of the model.
作者 马霞 寇静
出处 《山西师范大学学报(自然科学版)》 2016年第1期18-22,共5页 Journal of Shanxi Normal University(Natural Science Edition)
基金 太原工业学院科技处(2015LQ19)
关键词 离散传染病模型 向后欧拉法 基本再生数 稳定性 动力学行为 discrete SEIR model backward euler method basic reproductive number globally asymptotically stability dynamical behavior
  • 相关文献

参考文献10

  • 1Allen L. Some discrete-time $I, SIR and SIS epidemic models[J]. Math Biosci,1994, 124 : 83 - 105.
  • 2Zhou Y C, Paolo F. Dynamics of a discrete age-structured SIS mode|s[ J ]. Discrete aml Continmms dynamical systems, (series B), 2004, (4) 843 - 852.
  • 3Cao H, Zhou Y C. The discrete age-structured SEIT model with application to tuberculosis transmission in China[ J]. Malh Cnmput Model 2012,55(3) :385 -395.
  • 4Zhou Y C, Ma Z E. Global stability of a class of discrete age-structured SIS models wilh immigration [ J]. Math Binsei Eng,2009, (6) :409 - 425.
  • 5曹慧,周义仓.具有饱和发生率的离散SIR模型的分支[J].工程数学学报,2014,31(3):347-360. 被引量:4
  • 6Ma X, Zhou YC, Cao It. Global stability of the endemic equilibrium of a discrete SIR epidemic model[ J]. Advances in Difference Equations, 2013,(1):1 -19.
  • 7李颖路,雷磊,马润年.一类离散的传染病模型分析[J].空军工程大学学报(自然科学版),2006,7(3):85-88. 被引量:4
  • 8Diekmann O, Heesterbeek J, Metz J. On the definition and the computation of the basic reproduction ratio in models tbr infectious diseases[ J]. J Math Biol, 1990,35:503 - 522.
  • 9Allen L, van den Driessche P. The basic reproduction number in some discrete-time epidemic models[ J ]. J. Difference Equations and Appli- cations, 2008,14 : 1 127 - 1 147.
  • 10Elaydy S. An introduction to difference equations[M]. New York:Sprink, 2004.204 -255.

二级参考文献17

  • 1Kermack W O, Mckendfick A G. Contribution to the Mathematical Theory Ofepidemics [ J ]. Proc Roy Soc, 1933, 141 : 94 -I22.
  • 2Allen L J S, Burgin A M. Comparison of Deterministic and Stochastic SIS and SIR Models in Discrete Time[J]. Math Biosci,2000, I63:1-33.
  • 3Allen L J S. Some Discrete-Time SI SIR and SIS Epidemic Models[J]. MathBiosci, I994, 124:83 -105.
  • 4Zhou Y, Fergola P. Dynamics of a Discrete Age- Structured SIS Models[J]. Dis -Crete and Continuous Dynamical System - Series , 2004, 4 : 841 - 850.
  • 5Allen L.Some discrete-time SI,SIR,and SIS epidemic models[J].Mathematical Biosciences,1994,124(1):83-105.
  • 6Castillo-Chavez C,Yakubu A A.Discrete-time SIS models with complex dynamics[J].Nonlinear Analysis:Theory,Methods & Applications,2001,47(7):4753-4762.
  • 7Ca H,Zhou Y C,Song B J.Complex dynamics of discrete SEIS models with simple demography[J].Discrete Dynamics in Nature and Society,2011,2011:doi:10.1155/2011/653937.
  • 8Zhou Y C,Ma Z E,Brauer F.A discrete epidemic model for SARS transmission and control in China[J].Mathematical and Computer Modelling,2004,40(13):1491-1506.
  • 9Zhou Y C,et al.Projection of tuberculosis incidence with increasing immigration trends[J].Journal of Theoretical Biology,2008,254(2):215-228.
  • 10Cao H,Zhou Y C.The discrete age-structured SEIT model with application to tuberculosis transmission in China[J].Mathematical and Computer Modelling,2012,55(3-4):385-395.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部