期刊文献+

改进LMD分解和RBF神经网络的柴油机故障诊断研究 被引量:6

Diesel engine fault diagnosis based on improved LMD and RBF neural network
下载PDF
导出
摘要 柴油机作为大型机械的核心动力部件,其运行状态的监测和诊断尤为重要,但由于其工作环境复杂,振动信号包含大量噪声,所以特征向量难以有效提取,严重制约柴油机的故障诊断技术。该文将传统局域均值分解进行改进并将其与小波降噪相结合对原始振动信号进行降噪处理,并且利用改进局域均值分解法提取特征向量,最后应用径向基(RBF)神经网络进行故障识别。在实验中,采集4种故障工况和1种正常工况下的振动信号,利用上述方法完成对5种工况下的诊断,正确率达到95%。实验结果表明:该方法较改进前有明显进步,能有效诊断发动机故障,并且具有较高的正确率和较强的实用价值。 Diesel engines are core power units of large machinery and so monitoring and diagnosing their operation conditions become particularly important. This is because the working environment is complicated and vibration signals often contain much noise, which make feature vectors difficult to extract, thus seriously restricting the application of fault diagnosis technology. Therefore, traditional local mean decomposition is improved and combines with wavelet de-noising technology to reduce the noise of original vibration signals. The improved method is used to extract feature vectors at the same time and a RBF neural network is employed to identify diesel engine faults. In experiments, the vibration signals under 4 fault cases and 1 normal case are collected and diagnosed with this new method, and the diagnostic accuracy is up to 95%. Experimental results show that the proposed method is more practical and accurate than traditional methods.
出处 《中国测试》 CAS 北大核心 2016年第3期103-108,共6页 China Measurement & Test
关键词 柴油机故障诊断 局域均值分解 小波分解 RBF神经网络 diesel engine fault diagnosis LMD wavelet decomposition RBF neural network
  • 相关文献

参考文献10

  • 1陈鹏,陈晓宁,王征.现代柴油机故障诊断方法发展[J].机电技术,2014,0(6):154-156. 被引量:9
  • 2曹淑华,宁大勇,韩晓光,徐久军.声响信号分析的柴油机故障诊断方法[J].噪声与振动控制,2013,33(2):161-165. 被引量:2
  • 3别锋锋,刘杨,裴峻峰,范文华.EEMD近似熵和SVM在柴油机传动系统中的故障诊断研究[J].机械设计与制造,2015(3):24-27. 被引量:10
  • 4刘涛涛,潘宏侠.应用改进的LMD和小波降噪于滚动轴承故障诊断[J].噪声与振动控制,2014,34(2):152-157. 被引量:8
  • 5JONATHAN S S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Inteface, 2005,2 (5) : 444-450.
  • 6HAN H G, QIAO J F. Adaptive computation algorithm for RBF neural network IEEE Transactions on Neural Networks and Learning Systems, 2012,23 (2) : 342-347.
  • 7NIROS A D, TSEKOURAS G E. A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach[J]. Fuzzy Sets and Systems,2012(193): 62-84.
  • 8LIU S C, ZHANG Y F, MAP H, et al. A novel spatial interpolation method based on the integrated RBF neural network[J]. Procedia Environmental Sciences,2011 (10) :568-575.
  • 9LI C S, ZHOU J Z. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm[J]. Energy Conversion and Management, 2011,52 ( 1 ) : 374-381.
  • 10SIMONHK.神经网络原理[M].叶世伟,史忠植,译.北京:机械工业出版社,2004:92-99.

二级参考文献29

共引文献25

同被引文献42

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部