期刊文献+

多层简化应变梯度Timoshenko梁的变分原理分析 被引量:4

The Variational Principle for Multi-Layer Tim oshenko Beam Systems Based on the Sim plified Strain Gradient Theory
下载PDF
导出
摘要 材料特征尺寸与其内禀尺寸相当时,材料表现出明显的尺寸效应.基于简化的应变梯度理论,通过半逆法,本文给出多层简化应变梯度Timoshenko梁的变分原理,通过最小总势能原理导出系统的边界条件并对其低阶和高阶边界条件进行讨论,随后给出简支梁系统屈曲载荷和振动频率的Rayleigh(瑞利)解.通过双层梁系统的振动分析算例得到内禀尺寸、长径比等因素对梁系统振动频率的影响.该文构造的Rayleigh解有望对其他数值方法,如有限元法、传递矩阵法等,提供一定的参考和对比. The mechanical properties of member materials exhibit notable size effects when the characteristic sizes of the members are comparable to their instinct length parameters.A variational formulation of the nanosize multi-layer Timoshenko beam problem was developed via the semi-inverse method within the context of the simplified strain gradient theory.This method was fit for determining all the possible loworder and high-order boundary condtions directly from the governing equations of the system,according to the minimum total potential energy principle.In turn,the Rayleigh solutions of buckling load and free vibration frequencies of the simply supported beam system were given.The numerical simulations indicate the prominent effects of the instinct length parameters and aspect ratios on the free vibration frequencies of the double-layer beam systems.As a possible benchmark for the later numerical studies with the transfer matrix method or the finite element method,the present Rayleigh solutions of buckling load and free vibration frequencies of the multi-layer beam systems will make good sense.
出处 《应用数学和力学》 CSCD 北大核心 2016年第3期235-244,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11372252 11502202)~~
关键词 应变梯度理论 屈曲 振动 变分原理 strain gradient theory buckling vibration variational principle
  • 相关文献

参考文献17

  • 1Peddieson J, Buchanan G R, McNitt R P. Application of nonlocal continuum models to nanotechnology[J]. International Journal of Engineering Science,2003,41(3/5): 305-312.
  • 2Wang K F, Wang B L, Kitamura T. A review on the application of modified continuum models in modeling and simulation of nanostructures[J]. Acta Mechanica Sinica,2015: 1-18. doi: 10.1007/s10409-015-0508-4.
  • 3Adali S. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model[J]. Nano Letters,2009,9(5): 1737-1741.
  • 4Adali S. Variational formulation for buckling of multi-walled carbon nanotubes modelled as nonlocal Timoshenko beams[J]. Journal of Theoretical and Applied Mechanics,2012,50(1): 321-333.
  • 5Kucuk I, Sadek I S, Adali S. Variational principles for multiwalled carbon nanotubes undergoing vibrations based on nonlocal Timoshenko beam theory[J]. Journal of Nanomaterials,2010,2010(3): 461252. doi: 10.1155/2010/461252.
  • 6李明,郑慧明.小尺度对振动简支单层碳纳米管边界条件的影响[J].固体力学学报,2014,35(S1):6-8. 被引量:1
  • 7姚征,郑长良.积分形式非局部本构关系的界带分析方法[J].应用数学和力学,2015,36(4):362-370. 被引量:1
  • 8HE Ji-huan. Variational approach to (2+1)-dimensional dispersive long water equations[J]. Physics Letters A,2005,335(2/3): 182-184.
  • 9Kumar D, Heinrich C, Waas A M. Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories[J]. Journal of Applied Physics,2008,103(7): 073521.
  • 10LI Xian-fang, WANG Bao-lin, LEE Kang-yong. Size effects of the bending stiffness of nanowires[J]. Journal of Applied Physics,2009,105(7): 074306.

二级参考文献12

  • 1郑长良.非局部弹性直杆振动特征及Eringen常数的一个上限[J].力学学报,2005,37(6):796-798. 被引量:14
  • 2张洪武,姚征,钟万勰.界带分析的基本理论和计算方法[J].计算力学学报,2006,23(3):257-263. 被引量:8
  • 3Eringen A C.Nonlocal Continuum Field Theories[M].New York:Springer,2002.
  • 4Eringen A C.On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J].Journal of Applied Physics,1983,54(9):4703-4710.
  • 5Burhanettin S A,Ghatu S.A nonlocal formulation based on a novel averaging scheme applicable to nanostructured materials[J].Mechanics of Materials,2003,35(3/6):281-294.
  • 6Ganghoffer J F,de Borst R.A new framework in nonlocal mechanics[J].International Journal of Engineering Science,2000,38(4):453-486.
  • 7Reddy J N.Nonlocal theories for bending,buckling and vibration of beams[J].International Journal of Engineering Science,2007,45(2/8):288-307.
  • 8Zhang H W,Yao Z,Wang J B,Zhong W X.Phonon dispersion analysis of carbon nanotubes based on inter-belt model and symplectic solution method[J].International Journal of Solids and Structures,2007,44(20):6428-6449.
  • 9ZHONG Wan-xie.Duality System in Applied Mechanics and Optimal Control[M].New York:Springer,2004.
  • 10姚征,张洪武,王晋宝,钟万勰.基于界带模型的碳纳米管声子谱的辛分析[J].固体力学学报,2008,29(1):13-22. 被引量:14

同被引文献24

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部