摘要
We present a surface current method to model the graphene rectangular nanoantenna scattering in the terahertz band with Comsol. Compared with the equivalent thin slab method, the results obtained by the surface current method are more accurate and efficient. Then the electromagnetic scattering of circularly polarized terahertz waves on graphene nanoantennas is numerically analyzed by utilizing the surface current method. The depen- dences of the antenna resonant frequency with the circularly polarized wave on width and length are consistent with those for the linear polarized waves. These results are proved to be useful to design et^cient nanoantennas in terahertz wireless communications.
We present a surface current method to model the graphene rectangular nanoantenna scattering in the terahertz band with Comsol. Compared with the equivalent thin slab method, the results obtained by the surface current method are more accurate and efficient. Then the electromagnetic scattering of circularly polarized terahertz waves on graphene nanoantennas is numerically analyzed by utilizing the surface current method. The depen- dences of the antenna resonant frequency with the circularly polarized wave on width and length are consistent with those for the linear polarized waves. These results are proved to be useful to design et^cient nanoantennas in terahertz wireless communications.