摘要
利用垫江县城区大气自动监测资料,采用综合污染指数、Daniel趋势检验方法对城区大气环境质量变化趋势进行分析。研究结果表明:2015年,垫江县环境空气中SO2、PM10、NO2、O3年均值分别为12μg/m3、68μg/m3、46μg/m3、39μg/m3,空气优良天数达到348天,年度环境空气综合污染指数为2.55。2011—2015年,城区大气质量年际变化趋势表明4种主要污染物在评价时段内变化稳定或平稳。基于2015年4月、8月、10月和12月SO2、PM10、NO2、O34种大气污染物的时序监测数据,运用相关性分析、主成分分析和聚类分析,重点探讨大气污染物与气象因子间的相互关系。结果表明,温度、风速是两个重要的气象因子,对4种大气污染物均产生显著性影响;大气中4种污染物之间也存在显著性影响;主成分分析表明前两个主成分特征值均大于1,累计解释了总因子的48.763%、73.359%,其主要受人类活动污染影响。大气中4种污染物与气象因子间具有聚合性,综合分为3类:其中,PM10和NO2与SO2为一类;O3单独为一类。
Based on the atmospheric automatic monitoring data in the city proper of Dianjiang county in Chongqing, the comprehensive pollution index and Daniel Trend Test method are used to analyze the changing trend of urban atmospheric environmental quality. The results shows that: the annual average of SO2 , PM10, NO2 and O3 are respectively 12 μg/m3, 68 μg/m3 , 46 μg/m3 and 39 μg/m3, and the number of good air quality days is 348. In addition, annual ambient air comprehensive pollution index was 2.55. The annual changing trend of atmospheric quality shows that the change of the four main pollutants are stable or they stay stable during the evaluation period in 2011 -2015. Based on the monitoring data of PM10, NO2 , SO2 and O3 in April, August, October and December, the correlation analysis, principal component analysis (PCA) and cluster analysis (CA) are used to study the relationship between atmospheric pollutants and meteorological factors. The results shows that the temperature and wind speed are two important meteorological factors, and they have a significant impact on four air pollutants. PCA shows that the values of the first two principal components are greater than l, and cumulatively explains the total factor for 48. 763% and 73. 359% , which indicates that the main sources of atmospheric pollutants are resulted from human activities. These elements can be classified into three clusters, i. e. , cluster one (PM10 and NO2 ), cluster two (PMlo, NO2 and SO2) , cluster three (O3).
出处
《环境影响评价》
2016年第2期78-81,共4页
Environmental Impact Assessment
关键词
大气污染物
变化规律
主成分分析
聚类分析
atmospheric pollutants
changing trend
principal component analysis (PCA)
cluster analysis