期刊文献+

On Tensor Spaces for Rook Monoid Algebras

On Tensor Spaces for Rook Monoid Algebras
原文传递
导出
摘要 Let m, n ∈ N, and V be an m-dimensional vector space over a field F of characteristic 0. Let U = F + V and Rn be the rook monoid. In this paper, we construct a certain quasi-idempotent in the annihilator of U^×n in FRn, which comes from some one-dimensional two-sided ideal of rook monoid algebra. We show that the two-sided ideal generated by this element is indeed the whole annihilator of U^×n in FR^n. Let m, n ∈ N, and V be an m-dimensional vector space over a field F of characteristic 0. Let U = F + V and Rn be the rook monoid. In this paper, we construct a certain quasi-idempotent in the annihilator of U^×n in FRn, which comes from some one-dimensional two-sided ideal of rook monoid algebra. We show that the two-sided ideal generated by this element is indeed the whole annihilator of U^×n in FR^n.
作者 Zhan Kui XIAO
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第5期607-620,共14页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.11301195) a research foundation of Huaqiao University(Grant No.2014KJTD14)
关键词 Rook monoid tensor space general linear group symmetric group Rook monoid, tensor space, general linear group, symmetric group
  • 相关文献

参考文献15

  • 1East, J.: Cellular algebras and inverse semigroups. J. Algebra, 296, 505-519 (2006).
  • 2Goodman, R., Wallach, N.: Representations and Invariants of Classic Groups, Cambridge University Press, Cambridge, 1998.
  • 3Graham, J., Lehrer, G. I.: Cellular algebras. Invent. Math., 123, 1-34 (1996).
  • 4Grood, C.: A Specht module analog for the rook monoid. Electron. J. Combin., 9, 10 pp. (2002).
  • 5Halverson, T., delMas, E.: Representations of the rook-Brauer algebra. Comm. Algebra, 42, 423-443 (2014).
  • 6Hu, J., Xiao, Z.-K.: On tensor spaces for Birman-Murakami-Wenzl algebras. J. Algebra, 324, 2893-2922 (2010).
  • 7Kudryavtseva, G., Mazorchuk, V.: On presentations of Brauer-type monoids. Cent. Eur. J. Math., 4, 413-434 (2006).
  • 8Lehrer, G. I., Zhang, R. B.: The second fundamental theorem of invariant theory for the orthogonal group. Ann. Math., 176, 2031-2054 (2012).
  • 9Martin, P. P., Mazorchuk, V.: On the representation theory of partial Brauer algebras. Quart. J. Math., 65, 225-247 (2014).
  • 10Munn, W. D.: Matrix representations of semigroups. Proc. Cambridge Philos. Soc., 53, 5-12 (1957).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部