期刊文献+

基于高斯分布的多层无迹卡尔曼滤波算法 被引量:13

Multi-layer unscented Kalman filtering algorithm based on Gaussian distribution
原文传递
导出
摘要 在传统无迹卡尔曼滤波(UKF)中对其估计精度和计算效率起关键作用的是采样算法,即构造具有权重的样本点.研究表明,带权样本点匹配随机变量的阶矩越高滤波的精度越高,如多项式无迹卡尔曼滤波(PUKF),但通常此类算法的复杂度过高甚至难以求解.为此,基于高斯分布结合高阶矩匹配与无迹卡尔曼滤波线性扩张方法(LUKF),提出一种兼顾效率和精度的高斯滤波离线算法.实验结果表明,所提出算法拥有比UKF更高的估计精度和比PUKF更好的计算效率. The sampling algorithm of unscented Kalman filter(UKF), which selects the sigma points and their weights,plays a vital role for the accuracy and computational efficiency. It is well known that, more moments of random variables are matched, more accuracy reaches, for example, the Polynomial-extension of UKF(PUKF). However, such methods often suffer from their highly computational complexity, even worse, it is hard to get a solution. An efficient and highly accurate off-line algorithm is proposed for the Gaussian filter based on the high-order moments matching and linear-extension of UKF(LUKF). Experimental results show that the proposed algorithm has more accuracy than UKF and more computational efficiency than PUKF.
出处 《控制与决策》 EI CSCD 北大核心 2016年第4期609-615,共7页 Control and Decision
基金 国家自然科学基金项目(61202131) 重庆市科委基金项目(cstc2012gg B40004 cstc2014jcsfglyjs0005 cstc2014zktjccxyy B0031) 中国科学院"西部之光"项目
关键词 无迹卡尔曼滤波 多层采样 高斯分布 高阶无迹卡尔曼滤波 unscented Kalman filter multi-layer sampling Gaussian distribution high order UKF
  • 相关文献

参考文献27

  • 1Jazwinski A H. Stochastic processes and filtering theory[M]. New York: Courier Dover Publications, 2007: 162-193.
  • 2Maybeck P S. Stochastic models, estimation, and control [M]. New York: Academic Press, 1982: 68-266.
  • 3Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems[C]. Aerospace/Defense Sensing, Simulation and Controls. Orlando, 1997: 182-193.
  • 4Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proc of the IEEE, 2004, 92(3): 401-422.
  • 5Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans on Signal Processing, 2002, 50(2): 174-188.
  • 6Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans on Automatic Control, 2009, 54(6): 1254-1269.
  • 7Julier S J, Uhlmann J K. A counter example to the theory of simultaneous localization and map building[C]. Proc 2001 ICRA IEEE Int Conf on Robotics and Automation. Seoul: IEEE, 2001: 4238-4243.
  • 8Lerro D, Bar-Shalom Y. Tracking with debiased consistent conversistent converted measurement versus EKF[J]. IEEE Trans on Aerospace and Electronic Systems, 1993, 29(3): 1015-1022.
  • 9Senne K. Stochastic processes and filtering theory[J]. IEEE Trans on Automatic Control, 1972, 17(5): 752-753.
  • 10胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293

二级参考文献134

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2邓自立,王建国.非线性系统的自适应推广的Kalman滤波[J].自动化学报,1987,13(5):376-379.
  • 3Bar-Shalom Y, Rong L X, Kirubarajan T. Estimation with Application to Tracking and Navigation: Theory Algorithms and Software. New York: Wiley, 2001. 69-83.
  • 4Sorenson H W. Kalman Filtering: Theory and Application. New York: IEEE, 1985.
  • 5Daum F. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69.
  • 6Athans M, Wisher R P, Bertolini A. Suboptimal state esti- mation for continuous-time nonlinear systems from discrete noise measurements. IEEE Transactions on Automatic Con- trol, 1968, 13(5): 504-514.
  • 7Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for nonlinear transformation of means and covariances in fil- ters and estimators. IEEE Transactions on Automatic Con- trol, 2000, 45(3): 477-482.
  • 8Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 9Saulson B G, Chang K C. Nonlinear estimation compari- son for ballistic missile tracking. Optical Engineering, 2004, 43(6): 1424-1438.
  • 10Xiong K, Chan C, Zhang H S. Detection of satellite atti- tude sensor faults using the UKF. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 480-491.

共引文献720

同被引文献106

引证文献13

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部