期刊文献+

自适应变异粒子群算法 被引量:30

Particle Swarm Optimization based on self-adaptive mutation
下载PDF
导出
摘要 为了解决粒子群种群多样性低、容易陷入局部最优的缺点,结合最优粒子和其他粒子在种群中的不同作用,给出了一种自适应变异粒子群算法。算法中最优粒子根据种群进化程度,自适应调整自身搜索邻域大小,增强种群的局部搜索能力;对非最优粒子的位置进行小概率的随机初始化,当其速度为零时,速度自适应变化,以便增强种群多样性和全局搜索能力。仿真实验中,将算法应用于6个典型复杂函数优化问题,并与其他变异粒子群算法比较,结果表明,增强种群多样性的同时提高了局部搜索能力。 In order to deal with the problems that the diversity of particle swarm is low and it is easy for particle swarm to fall in local optimum solution, this paper proposes a novel Particle Swarm Optimization(PSO) algorithm based on self-adaptive mutation, which combines with the optimal and other particles' different role in the population. In the proposed algorithm, according to the evolution degree, the optimal particle can adaptively adjust its adjacent search domain size so as to strengthen the local search capacity and for the non-optimal particles, their locations can initialize randomly in low probability in order to increase the diversity of particle swarm and enhance the global search capacity when its speed is zero. In simulation, the algorithm is applied to the optimization problems of six typical complex functions, and comparing its performance with the other mutation PSO algorithms. The simulation results show that the proposed algorithm not only enhances population diversity, but also strengthens the local search capacity.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第7期50-55,149,共7页 Computer Engineering and Applications
基金 四川省教育厅资助项目(No.13ZB0287)
关键词 粒子群算法 局部收敛 自适应 变异操作 群体智能 Particle Swarm Optimization(PSO) local convergence self-adaptive mutation swarm intelligence
  • 相关文献

参考文献16

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc of IEEE International Conference on Neural Networks,Perth,WA,1995.Piscataway,NJ:IEEE Service Center,1995:1942-1948.
  • 2纪震,廖惠连,昊青华.粒子群算法及应用[M].北京:科学出版社,2010.
  • 3Eberhart R C,Shi Y.Particle swarm optimization:Developments,applications and resources[C]//Proc of the 2001Congress on Evolutionary Computation,Seoul,2001.Piscataway,NJ:IEEE Press,2001:81-86.
  • 4Mohaghegi S,Del Valle Y,Venayagamoorthy G K,et al.A comparison of PSO and backpropagation for training RBF neural networks for identification of a power system with STATCOM[C]//Proc of IEEE Swarm Intelligence Symposium,2005.Piscataway,NJ:IEEE Press,2005:381-384.
  • 5吴秋波,王允诚,赵秋亮,吴昌荣.混沌惯性权值调整策略的粒子群优化算法[J].计算机工程与应用,2009,45(7):49-51. 被引量:19
  • 6Shi Y H,Eberhart R C.Fuzzy adaptive particle swarm optimization[C]//Proc of the 2001 Congress on Evolutionary Computation,Seoul.Piscataway,NJ:IEEE Press,2001:101-106.
  • 7Doctor S,Venayagamoorthy G K,Gudise V G.Optimal PSO for collective robotic search applications[C]//Proc of the CEC 2004 Congress on Evolutionary Computation,2004.Piscataway,NJ:IEEE Press,2004:1390-1395.
  • 8Zhang Wen,Liu Yutian,Clerc M.An adaptive PSO algorithm for reactive power optimization[C]//Proc of the 6th International Conference on Advances in Power System Control,Operation and Management,2003.Piscataway,NJ:IEEE Press,2003:302-307.
  • 9任子晖,王坚.一种动态改变惯性权重的自适应粒子群算法[J].计算机科学,2009,36(2):227-229. 被引量:50
  • 10Ratnaweera A,Halgamuge S K,Watson H C.Self-Organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[C]//Proc of the IEEE Transactions on Evolutionary Computation,2004.Piscataway,NJ:IEEE Press,2003:240-255.

二级参考文献30

  • 1李宁,孙德宝,岑翼刚,邹彤.带变异算子的粒子群优化算法[J].计算机工程与应用,2004,40(17):12-14. 被引量:60
  • 2张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:85
  • 3赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 4Kennedy J,Eberhert R. Particle swarm optimization///IEEE International Conference on Neural Networks. 1995:1942- 1948
  • 5Elegbede C. Structural reliability assessment based on particles swarm optimization[J]. Structral Safety, 2005,27 (10) : 171-186
  • 6Pobinson J , Rahmat - Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004,52 (2) : 397-406
  • 7Salman A, Ahmad I, Al-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002,26 (8) : 363-371
  • 8Shi Y, Eberhart R. Empirical study of particle swarm optimization[A]//International Conference on Evolutionary Compution[C]. Washington, USA: IEEE, 1999,1945-1950
  • 9Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. The IEEE Congress on Evolutionary Compution[C], San Francisco, USA: IEEE, 2001 : 101- 106
  • 10Eberhart R , Shi Y. Tracking and optimizing dynamic systems with particle swarm[A]. The IEEE Congress on Evolutionary Computatiion[C].San Francisco, USA: IEEE, 2001 : 94-100

共引文献297

同被引文献287

引证文献30

二级引证文献203

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部