期刊文献+

加权小波和流形正则化的NMF融合的人脸识别 被引量:1

Face recognition based on weighted wavelet decomposition and manifold regularized non-negative matrix factorization
下载PDF
导出
摘要 为了获取更充分的人脸特征信息以提高识别性能,应用加权小波变换和流形正则化非负矩阵分解的方法实现人脸识别。采用小波变换,提取训练样本人脸图像的加权高频分量和低频分量的特征信息;应用流形正则化非负矩阵分解方法,在保持人脸特征数据原始几何结构和局部特征的基础上获取最终的识别特征;利用最近邻方法进行分类识别。将该算法在ORL人脸库和YALE人脸库上进行测试验证,结果表明,与传统的非负矩阵分解方法相比,其识别率高出5%左右,且计算时间很低,说明该方法耗时短,效率高。 In order to improve the recognition performance by obtaining more sufficient face features, the method of weighted wavelet decomposition and manifold regularized non-negative matrix factorization is introduced to realize face recognition. Firstly, wavelet decomposition with its weighted high frequency is applied to extract the features of weighted high frequency component and low frequency component from training samples. Secondly, with maintaining potential geometric structures and local features of the face features, it uses manifold regularized non-negative matrix factorization to acquire final recognition characteristics. Lastly, nearest neighbor method is used to be classified and recognized. Comparing with the traditional method of non-negative matrix factorization, experimental results on ORL face databases and YALE face databases show that the recognition rate is about increased by 5% and computation time is quite shorter. Hence, the proposed method has less time consuming, as well as a better recognition performance.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第7期150-154,190,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61301276) 西安工程大学控制科学与工程学科建设经费资助(No.107090811) 西安工程大学博士科研启动金项目(No.BS1207) 陕西省级大学生创新创业训练计划项目(No.1571)
关键词 人脸识别 加权小波变换 非负矩阵分解 流形正则化 face recognition weighted wavelet decomposition non-negative matrix factorization manifold regularization
  • 相关文献

参考文献16

  • 1Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 2Hong Ziquan.Algebraic feature extraction of image for recognition[J].Pattern Recognition,1991,24(3):211-219.
  • 3Lee T S.Image representation using 2D Gabor wavelets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(10):959-971.
  • 4Chien Jentzung,Wu Chinachen.Discriminant waveletfaces and nearest feature classifiers for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(12):1644-1649.
  • 5杨军,袁红照.结合小波变换和图像主元分析的人脸识别[J].计算机工程与应用,2010,46(4):1-3. 被引量:15
  • 6Zhao Minghua,Li Peng,Liu Zhifang.Face recognition based on wavelet transform weighted modular PCA[C]//Proceedings of IEEE Conference on Image and Signal Processing,2008:589-593.
  • 7Lee D D,Seung H S.Learning the parts of objects by nonnegative matrix factorization[J].Nature,1999,401:788-791.
  • 8刘毅,冯国富,江效尧,孙怀江,夏德深.基于小波变换与图割的彩色图像分割方法[J].小型微型计算机系统,2012,33(10):2307-2310. 被引量:4
  • 9Cai Deng,He Xiaofei,Han Jiawei,et al.Graph regularized non-negative matrix factorization for data representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1548-1560.
  • 10Sharifi Z,Rezghi M,Nasiri M.A new algorithm for solving data sparsity problem based-on non-negative matrix factorization in recommender systems[C]//Proceedings of International Coference on Computer and KnowledgeEngineering,2014:56-61.

二级参考文献35

  • 1陈粟,倪林.一种特征脸分析和小波变换相结合的人脸识别方法[J].计算机应用,2004,24(10):75-77. 被引量:11
  • 2周国民,陈勇,李国军.人脸识别中应用小波变换的两个关键问题[J].浙江大学学报(理学版),2005,32(1):34-38. 被引量:27
  • 3Kirby M, Sirovich L.Application of the KL procedure for the characterization of human faces[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,12( 1 ) : 103-108.
  • 4Turk M,Pentland A.Eigenfaces for recognition[J].Cognitive Neuroscience, 1991,3(1 ) :71-86.
  • 5Yang M H.Kernel eigenfaces vs Kernel fisherfaces:Face recogni- tion using Kernel methods[C]//IEEE Conference Automatic Face and Gesture Recognition(AFGR), 2002: 215-220.
  • 6Gottumukkal R,Asari V K.An improved face recognition technique based on modular PCA approach[J].Pattem Recognition Letter,2004, 25(4) :429-436.
  • 7Yang J,Zhang D,Frangi A F,et al.Two dimensional PCA:A new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,24(1):131-137.
  • 8Wang L W,Wang X,Zhang X R, et al.The equivalence of two-dimensional PCA to line-based PCA[J].Pattern Recognition Letters, 2005,26( 1 ) : 57-60.
  • 9Yang J,Yang J Y.From image vector to matrix:A straightforward image projection technique IMPCA vs PCA[J].Pattern Recognition, 2002,35(9) : 1997-1999.
  • 10Xu Yong,Zhang D.An approach for directly extracting features from matrix data and its application in face recognition[J].Neurocomputing, 2008,71 : 1857-1865.

共引文献28

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部