期刊文献+

微放电及其应用 被引量:43

Micro-discharge and Its Applications
原文传递
导出
摘要 微放电是放电通道被限制在一个很小空间区域内的气体放电,电极间隙或放电空间尺度一般为亚毫米以下量级。相比常规尺度放电,放电尺度的减小使得微放电具有很多独特性质,因而受到研究者的日益关注。一方面,微放电结构适合于微型化和平面化,可以应用于生物医学、微区电晕散热技术、微机电驱动系统、离子风机、静电流体加速器、气体传感器、离子源、液相放电加工工艺和漏电检测等诸多方面。另一方面,随着大规模集成电路、微电子工艺和微机电系统的迅速发展,电子元件的集成度越来越高,导体电极本身的尺寸和导体之间的间隙大大降低,小电压可以在微电极间隙产生很强的电场,从而造成低电压击穿,成为微电子产品、火工品和电力系统的安全危害源之一。文章对微放电的研究历史、基本原理、击穿与放电特性、稳定性进行了综述,介绍了电晕微放电、微空心阴极放电、DBD微放电、毛细管放电等不同的微放电结构,并从ESD和安全防护、力学效应、光学效应、电学效应、化学与生物医学效应5个方面对微放电近年来的应用研究进展进行了总结。 Micro-discharge happens in a limited space. The gap spacing has the magnitude of sub-millimeters or below. Compared with the traditional gas discharge, micro-discharge has some unique characteristics due to the micro-scale and hence attracts a great amount of interest. On one hand, the micro-discharge system is easy to be miniaturized thus having great potential in applications such as biomedicine, micro-region thermal cooling, micro-electro-mechanical system, ionic blower, electrostatic-fluid accelerator, gas sensor, ion sources, liquid discharge technic, and electrostatic detection. On the other hand, accompanying with the rapid development of integrated circuits, micro-electronics technology and micro-electro-mechanical systems, the dimension of the conductor electrodes as well as the gap spacing between them has been sharply reduced. A possible risk comes from electrostatic discharge under low voltage breakdown that could turn to a hazard source for micro-electronics, initiate explosive materials or devices as well as electric power system. We review and summarize numerous experimental, computational and analytical works on micro-discharge and micro-plasma in recent years, and introduce progress in understanding the mechanisms and physics of micro-discharge and in the applications.
出处 《高电压技术》 EI CAS CSCD 北大核心 2016年第3期673-684,共12页 High Voltage Engineering
基金 国家自然科学基金(11475019 11005009)~~
关键词 气体放电 微放电 微等离子体 击穿特性 场致发射 帕邢曲线 gas discharge micro-discharge micro-plasma breakdown characteristics field emission Paschen's curve
  • 相关文献

参考文献98

  • 1Germer L H. Electrical breakdown between close electrodes in air[J]. Journal of Applied Physics, 1959, 30(1 ): 46-51.
  • 2Boyle W S, Kisliuk P. Departure from Paschen's law of breakdown in gases[J]. Physical Review, 1955, 97(2): 255.
  • 3Torres J M, Dhariwal R S. Electric field breakdown at mierometre separations[J]. Nanotechnology, 1999, 10(1): 102.
  • 4Torres J M, Dhariwal R S. Electric field breakdown at micrometre separations in air and vacuum[J]. Microsystem technologies, 1999, 6(1): 6-10.
  • 5Dhariwal R S, Torres J M, Desmulliez M P Y. Electric field breakdown at micrometre separations in air and nitrogen at atmospheric pres- sure[J]. IEE Proceedings- Science, Measurement and Technology, IET, 2000, 147(5): 261-265.
  • 6Slade P G, Taylor E D. Electrical breakdown in atmospheric air be- tween closely spaced (0.2-40 ~tm) electrical contacts[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(3) 390-396.
  • 7Ono T, Sim D Y, Esashi M. Micro-discharge and electric breakdown in a micro-gap[J]. Journal of Mieromechanics and Microengineering, 2000, 10(3): 445.
  • 8Radmilovir-Radjenovi~ M, Matej~ik S, Klas M, et al. The role of the field emission effect in direct-current argon discharges for the gaps ranging from 1 to 100 p-m[J]. Journal of Physics D: Applied Physics, 2013, 46(1): 015302.
  • 9Radmilovir-Radjenovi6 M, Radjenovi6 B, Matej~ik S, et al. The breakdown phenomena in micrometer scale direct-current gas dis- charges [J]. Plasma Chemistry and Plasma Processing, 2014, 34(1): 55-64.
  • 10Tirumala R, Li Y, Pohlman D A, et al. Corona discharges in sub-millimeter electrode gaps[J]. Journal of Electrostatics, 2011, 69(1): 36-42.

二级参考文献196

共引文献300

同被引文献295

引证文献43

二级引证文献371

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部