期刊文献+

三角翼微秒脉冲等离子体流动控制的试验研究 被引量:18

Experimental Investigation of Delta-wing Flow Control by Microsecond Pulse Plasma Actuator
原文传递
导出
摘要 为改善三角翼在大迎角下的气动特性,进行了微秒脉冲表面介质阻挡放电(SDBD)激励在静止空气中的纹影试验、不同迎角下的PIV测速试验以及不同试验参数下的测力试验。试验结果表明:微秒脉冲SDBD可产生快速温升,快速温升在流场局部诱导产生压缩波;微秒脉冲SDBD激励可有效地控制低速三角翼大迎角下的流动分离,且随迎角增大,流动控制效果逐渐减弱直到消失;存在最佳激励频率,此时流动控制效果最好,当来流风速30 m/s时,最佳激励频率为80 Hz,无量纲频率为1,可将三角翼最大升力系数提高4.3%,失速迎角推迟2°;在同一迎角下,来流速度45 m/s时,流动控制效果较30 m/s时有所降低。 To improve the delta-wing aerodynamic characteristic at high angle of attack, the schlieren test under static atmosphere, PIV measurement at different angles of attack, and force measurement under different parameters by microsecond pulse dielectric barrier discharge(SDBD) were conducted. It is shown that SDBD can result in instant heating which induces compressional wave locally and can effectively control the flow separation of low-speed delta wing at high angle of attack. With increase in the angle of attack, the effect of flow control will be weakened until disappearing. There is an optimal frequency which is the most efficient for flow control. When the free-stream velocity is 30 m/s, the optimal frequency is 80 Hz and the non-dimensional frequency is 1, which can increase the maximum lift coefficient of delta wing by 4.3% and delay the stall angle of attack with 2°. At the same angle of attack, the effect of flow control is better at free-stream velocity of 45 m/s than that at 30 m/s.
出处 《高电压技术》 EI CAS CSCD 北大核心 2016年第3期782-789,共8页 High Voltage Engineering
基金 国家自然科学基金(51207169 51276197) 航空科学基金(20141396009)~~
关键词 微秒脉冲 介质阻挡放电 三角翼 失速 流动分离 流动控制 microsecond pulse dielectric barrier discharge delta-wing stall flow separation flow control
  • 相关文献

参考文献24

  • 1Roth J R, Sherman D M, Wilkinson S E Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma[R]. Reno,USA: AIAA, 1998:0328.
  • 2Satn M, Asada K, Nonomura T, et al. Effective mechanisms for turbulent-separation control by DBD plasma actuator around NACA0015 at Reynolds Number 1600000[C]//7~' AIAA Flow Control Conference. [S.I.]: AIAA, 2014: 2663.
  • 3Houser N M, Gimeno L, Hanson R E, et al. Micro-fabrication of dielectric barrier discharge plasma actuators for flow control[J]. Sensors and Actuators A: Physical, 2013, 201(12): 101-104.
  • 4李应红,梁华,马清源,吴云,宋慧敏,武卫.脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J].航空学报,2008,29(6):1429-1435. 被引量:72
  • 5Daniel K V N, Thomas C C, Scott C M. Tip clearance flow control in a linear turbine cascade using plasma actuation[R].F lorida, USA: AIAA, 2009:300.
  • 6Greenblatt D, Kastantin Y, Nayeri C N, et al. Delta wing flow control using dielectric barrier discharge actuators[J]. AIAA Journal, 2008, 46(6):1554-1560.
  • 7Andrey A S, Alexey D B, Anatoly A M, et al. Plasma control of vortex flow on a delta wing at high angles of attack[J]. Exp Fluids, 2013, 54(8): 1-12.
  • 8Jiang Li, Lei-Lei Yang, Bin Wang, et al. Airflow control by DBD actuator over an MDA airfoil[J]. IEEE Transactions on Plasma Science, 2014, 42(10):2820.
  • 9David M S, Flint O T. Turbulent boundary-layer separation control with single dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2010, 48(8): 1620-1634.
  • 10杨波,孙敏,白敏菂.介质阻挡放电等离子体抑制翼型流动分离的实验研究[J].高电压技术,2014,40(1):212-218. 被引量:12

二级参考文献124

共引文献218

同被引文献174

引证文献18

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部