期刊文献+

冲击特征受控极小化通用稀疏表示及其在机械故障诊断中的应用 被引量:6

Majorization Minimization Oriented Sparse Optimization Method for Feature Extraction Technique in Machinery Fault Diagnosis
下载PDF
导出
摘要 针对强背景噪声下机械故障微弱暂态特征表示和有效提取的难题,提出了通用的稀疏优化特征提取算法。算法针对含噪声冲击性特征提取问题设计了稀疏优化表征函数,该函数融合了冲击特征的保真度与惩罚函数因子,考虑了正则化参数以适应不同工程背景下各分析因子的实际影响,实现处理结果稀疏性极大化。同时,引入受控极小化方法对设计的表征函数进行转化,分解成一系列凸优化分析问题。提出了针对离散信号的有限差分式数值迭代算法,验证了其快速收敛性和数值稳定性,提出的算法对机械故障诊断的数字采样信号具有普遍适用性。将所提出的算法应用于实验室环境下的轴承故障特征识别中,无论是低噪声还是低信噪比白噪声环境下,振动信号中的冲击特征都得到了显著增强,在Hilbert包络谱中的故障特征频率及其高次谐波比能量中占优。所提出的算法还应用于电力机车走行部轮对的故障诊断中,在高强度的工程有色噪声环境下精确提取了其中的冲击衰减成分,在时域和频域诊断结果中都得到了准确的验证,指导了诊断实践。 To deal with the effective representation and extraction of incipient transient features of mechanical fault,ageneral sparsity based identification approach is proposed.This approach designs a sparsity optimization function that integrates impulsive feature preserving factor and penalty function factor,and takes the regularization parameter into consideration such as to address the actual factor weights in different situations.The majorization minimization is introduced to simplify the designed function into a series of convex optimization problems.A finite difference based numerical iterative method is developed for the proposed approach,and its fast convergence and numerical stability are illustrated.The proposed approach is versatile to digital signal processing of mechanical fault detecting practices,and is applied to bearing fault identifications in lab.It is shown that no matter in high or low noise backgrounds,the impulsivecomponents are significantly enhanced,which can be verified in the dominant energy ratios of characteristic frequencies in the Hilbert envelope spectrum.This approach is also utilized to conduct bearing fault diagnosis of traction part of electrical locomotive,and the impulsive features masked by heavy colored noises are effectively detected in time domain and spectral domain.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第4期94-99,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51275384) 福建省重大科技项目(2014H6025) 福建省高端装备制造协同创新中心资助项目
关键词 稀疏表示 凸优化问题 受控极小化 特征提取 故障诊断 sparse representation convex optimization majorization minimization feature extraction fault diagnosis
  • 相关文献

参考文献11

  • 1LEI Y G, LIN J, ZUO M J, et al. Condition monito- ring and fault diagnosis of planetary gearboxes: a re- view [J]. Measurement, 2014, 48: 292-305.
  • 2MALLAT S. A wavelet tour of signal processing: the sparse way [M]. New York, USA: Academic Press, 2008 z 292-305.
  • 3HE Wangpeng, ZI Yanyang, CHEN Binqiang, et al. Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform [J]. Mechanical Systems and Signal Processing, 2015, 54: 457-460.
  • 4HE WangPeng,ZI YanYang,CHEN BinQiang,WANG Shuai,HE ZhengJia.Tunable Q-factor wavelet transform denoising with neighboring coefficients and its application to rotating machinery fault diagnosis[J].Science China(Technological Sciences),2013,56(8):1956-1965. 被引量:27
  • 5CHEN Binqiang, ZHANG Zhousuo, ZI Yanyang, et al. Detecting of transient vibration signatures using an improved fast spatial-spectral ensemble kurtosis kurto- gram and its applications to mechanical signature anal- ysis of short duration data from rotating machinery [J]. Mechanical Systems and Signal Processing, 2013, 40(1) : 1-37.
  • 6FIGUEIREDO M A, BIOUCAS-DIAS J M, NOWAK R D. Majorization-minimization algorithms for wave- let-based image restoration [J]. IEEE Transactions on Image Processing, 2007, 16(12): 2980-2991.
  • 7AFONSO M V, BIOUCAS-DIAS J M, FIGUEIREDO M A. Fast image recovery using variable splitting and constrained optimization [J]. IEEE Transactions on Image Processing, 2010, 19(9): 2345-2356.
  • 8CONDAT L. A direct algorithm for 1D total variation denoising [J]. IEEE Signal Processing Letters, 2013, 20(11) : 1054-1057.
  • 9TYLAVSKY D J, SOHIE G R L. Generalization of the matrix inversion lemma [J]. Proceedings of the IEEE, 1986, 74(7): 1050-1052.
  • 10何正嘉,訾艳阳,陈雪峰,王晓冬.内积变换原理与机械故障诊断[J].振动工程学报,2007,20(5):528-533. 被引量:27

二级参考文献14

  • 1YUAN Jing,HE ZhengJia,ZI YanYang,LIU Han.Gearbox fault diagnosis of rolling mills using multiwavelet sliding window neighboring coefficient denoising and optimal blind deconvolution[J].Science China(Technological Sciences),2009,52(10):2801-2809. 被引量:7
  • 2杨力华,戴道清,黄文良等译.信号处理的小波导引[M].(Mallat S.A wavelet tour of signal processing.Second Edition,1999).北京:机械工业出版社,2002.
  • 3Zhang L, Gao R X, Lee K B. Spindle health diagnosis based on analytic wavelet enveloping [J]. IEEE Transactions on Instrumentation and Measurement,2006, 55(5): 1 850-1 858.
  • 4Sanz J, Perera R, Huerta C. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms[J]. Journal of Sound and Vibration, 2007, 302(4-5): 981--999.
  • 5Peng Z K, Chu F L, Tse P W. Singularity analysis of the vibration signals by means of wavelet modulus maximal method[J]. Mechanical Systems and Signal Processing, 2007, 21(2):780--794.
  • 6Sweldens W. The lifting scheme: A construction of second generation wavelet constructions[J]. SIAM J. Math. Anal. 1997, 29(2):511--546.
  • 7Geronimo J S, Hardin D P, Massopust P R. Fractal function and wavelet expansions based on several scaling functions[J]. Journal of Approximation Theory, 1994,78:373--401.
  • 8Strela V, Walden A T. Orthogonal and biorthogonal multiwavelets for signal denoising and image compression[J]. Proc SPIE, 1998, 3 391: 96--107.
  • 9Vasily Strela, Peter Niels Heller, Gilbert Strang, et al. The application of multiwavelet filterbanks to image processing[J]. IEEE Transactions on Image Processing, 1999, 8: 548--563.
  • 10Khadem S E, Rezaee M. Development of vibration signature analysis using multiwavelet systems [J]. Journal of Sound and Vibration, 2003, 261: 613-- 633.

共引文献51

同被引文献31

引证文献6

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部