期刊文献+

考虑屈曲的钢筋滞回模型 被引量:11

Hysteretic model of reinforced bar considering buckling
原文传递
导出
摘要 提出了一个循环荷载下考虑钢筋屈曲影响的应力应变关系模型,并在通用商业有限元平台ABAQUS中完成该材料模型的二次开发以便于工程设计应用.模型由钢筋拉压包络曲线和循环路径组成,其中,钢筋受拉包络曲线由弹性和线性硬化两个区域组成;受压包络曲线由线性弹性和随后包含非线性屈曲效应的两部分组成;循环部分遵循Ramberg-Osgood公式,但对受压循环作了一些修正以便考虑屈曲效应.而完整的钢筋循环本构模型通过结合拉压包络曲线和循环曲线获得.通过1个钢筋和3个具有不同钢筋长细比的钢筋混凝土结构模拟结果与试验结果的对比发现,所提出的模型能够合理地预示钢筋屈曲或未屈曲情况下钢筋混凝土结构的循环性能. A formulation of a cyclic stress-strain relationship of reinforcing bars is presented.The formulation includes bars buckling.For the sake of easy use in engineering design,a finite element program based on ABAQUS has been developed.The model is comprised of a tension/compression envelope and cyclic loops.The tension envelope contains an elastic range and a linear hardening zone.The compression envelope also includes a linear elastic range followed by a nonlinear buckling model.The cyclic loops follow Ramberg-Osgood formulations with some modifications to account for the effect of buckling.A complete path-dependent cyclic constitutive model is then obtained by combining the equations representing the two monotonic envelopes and the cyclic loops.Comparison with one bar and three RC structural test results shows that the proposed model could reasonably predict the cyclic behavior of reinforced concrete structures including or excluding bar buckling.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2016年第2期254-258,共5页 Engineering Journal of Wuhan University
基金 国家自然科学基金项目(编号:51378313) 深圳市基础研究计划项目(编号:JCYJ2012061408545232)
关键词 混凝土结构 循环荷载 Ramberg-Osgood模型 钢筋屈曲 数值分析 concrete structures cyclic loading Ramberg-Osgood model bar buckling numerical analysis
  • 相关文献

参考文献15

  • 1Mengotto M,Pinto P E.Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending[C]//Proceedings of the Conference on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads,IABSE Reports Vol.13,Lisbon,1973:15-22.
  • 2Dodd L,Restrepo-Posada J I.Model for predicting cyclic behavior of reinforcing steel[J].Journal of Structure Engineering,ASCE,1995,121(3):433-445.
  • 3Vecchio F J.Towards cyclic load modeling of reinforced concrete[J].ACI Structural Journal,1999,96(2):192-202.
  • 4Filippou F C,Popov E P,Bertero V V.Effects of bond deterioration on hysteretic behavior of reinforced concrete joints[R].University of California,Berkeley,1983.
  • 5Monti G,Nuti C.Nonlinear cyclic behavior of reinforcing bars including buckling[J].Journal of Structural Engineering,ASCE,1992,118(12):3268-3284.
  • 6Gomes A,Appleton J.Nonlinear cyclic stress strain relationship of reinforcing bars including buckling[J].Engineering Structures,1997,19(10):822-826.
  • 7Dhakal R,Maekawa K.Modelling for post yielding buckling of reinforcement[J].Journal of Structural Engineering,ASCE,2002,128(9):1139-1147.
  • 8Kunnath S K,Heo Y A,Mohle J F.Nonlinear uniaxial material model for reinforcing steel bars[J].Journal of Structure Engineering,ASCE,2009,135(4):335-343.
  • 9Korentz J.The effect of yield strength on inelastic buckling of reinforcing bars[J].Mechanics and Mechanical Engineering,2010,14(2):247-255.
  • 10Clough R W.Effect of stiffness degradation on earthquake ductility requirements[R].University of California,Berkeley,1966.

二级参考文献16

  • 1Vecchio F J, Collins M P. The modified compression field theory for reinforced concrete elements subjected to shear[J]. ACI Structural Journal, 1986, 83(2): 219-231.
  • 2Ayoub A, Filippou F C. Nonlinear finite element analysis of RC shear panels and walls[J]. Journal of Structure Engineering, ASCE, 1998, 124(3): 298-308.
  • 3Zhang, J. Model-based simulation of reinforced concrete plane stress structures[D]. Ph. D., thesis, University of Houston, 2005.
  • 4Vecchio F J. Reinforced concrete membrane element formulations[J]. Journal of Structure Engineering, ASCE, 1990, 116(3): 730-750.
  • 5Vecchio F J. Finite element modeling of concrete expansion and confinement[J]. Journal of Structure Engineering, ASCE, 1992, 118(9): 2390-2406.
  • 6Vecchio F J. Compression response of cracked reinforced concrete[J]. Journal of Structure Engineering, ASCE, 1993, 119(12): 3590-3610.
  • 7Popovics S. A numerical approach to the complete stress strain curve of concrete[J]. Cement and Concrete Research, 1973, 3(5): 583-599.
  • 8Scott B D, Park R, Priestley M J N. Stress strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. ACI Structural Journal, 1982, 79(1): 13-27.
  • 9方自虎, 周海俊, 赖少颖, 等. ABAQUS混凝土损伤参数的计算方法[J]. 建筑结构(增刊), 2014,44(S1): 719-721.
  • 10Filippou F C, Popov E P, Bertero V V. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints[R]. 1983, University of California.

共引文献7

同被引文献71

引证文献11

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部