期刊文献+

Uniformity Pattern of Asymmetric Fractional Factorials

Uniformity Pattern of Asymmetric Fractional Factorials
原文传递
导出
摘要 The objective of this paper is to discuss the issue of the projection uniformity of asymmetric fractional factorials.On the basis of Lee discrepancy,the authors define the projection Lee discrepancy to measure the uniformity for low-dimensional projection designs.Moreover,the concepts of uniformity pattern and minimum projection uniformity criterion are proposed,which can be used to assess and compare two and three mixed levels factorials.Statistical justification of uniformity pattern is also investigated.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第2期499-510,共12页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundations of China under Grant Nos.11271147 and 11401596
关键词 Lower bound minimum projection uniformity ORTHOGONALITY projection Lee discrepancy uniformity pattern. 均匀性 不对称 阶乘 分数 统一模式 混合水平 投影 低维
  • 相关文献

参考文献4

二级参考文献12

  • 1FANG Kaitai QIN Hong.Uniformity pattern and related criteria for two-level factorials[J].Science China Mathematics,2005,48(1):1-11. 被引量:16
  • 2Chatterjee K, Fang K T, Qin H. Uniformity in factorial designs with mixed levels. J Statist Plann Inference, 2005, 128: 593-607.
  • 3Fang K T, Li R, Sudjianto A. Design and Modelling for Computer Experiments. London: Chapman and Hall, 2005.
  • 4Fang K T, Ma C X, Mukerjee R. Uniformity in fractional factorials. In: Fang K T, Hickernell F J, Niederreiter H, eds. Monte Carlo and Quaai-Monte Carlo Methods in Scientific Compnting. Berlin: Springer-Verlag, 2002, 232-241.
  • 5Fang K T, Wang Y. Number-Theoretic Methods in Statistics. New York: Chapman and Hall, 1994.
  • 6Hickernell F J, Liu M Q. Uniform designs limit aliasing. Biometrika, 2002, 89: 893-904.
  • 7Mukerjee R, Wu C F J. On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Ann Statist, 1995, 23: 2102-2115.
  • 8Xu H. Minimum moment aberration for nonregular designs and supersaturated designs. Statist Sinica, 2003, 13: 691-708.
  • 9Xu H, Wu C F J. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann Statist, 2001, 29: 549-560.
  • 10Zhon Y D, Ning J H, Song X B. Lee discrepancy and its applications in experimental designs. Statist Probab Lett, 2008, 78: 1933-1942.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部