期刊文献+

Heteroscedasticity Detection and Estimation with Quantile Difference Method

Heteroscedasticity Detection and Estimation with Quantile Difference Method
原文传递
导出
摘要 When dealing with regression analysis,heteroscedasticity is a problem that the authors have to face with.Especially if little information can be got in advance,detection of heteroscedasticity as well as estimation of statistical models could be even more difficult.To this end,this paper proposes a quantile difference method(QDM) that can effectively estimate the heteroscedastic function.This method,being completely free from the estimation of mean regression function,is simple,robust and easy to implement.Moreover,the QDM method enables the detection of heteroscedasticity without any restrictions on error terms,consequently being widely applied.What is worth mentioning is that based on the proposed approach estimators of both mean regression function and heteroscedastic function can be obtained.In the end,the authors conduct some simulations to examine the performance of the proposed methods and use a real data to make an illustration.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第2期511-530,共20页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.11271368 the Major Program of Beijing Philosophy and Social Science Foundation of China under Grant No.15ZDA17 the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20130004110007 the Key Program of National Philosophy and Social Science Foundation under Grant No.13AZD064 the Fundamental Research Funds for the Central Universities,and the Research Funds of Renmin University of China under Grant No.15XNL008 the Project of Flying Apsaras Scholar of Lanzhou University of Finance & Economics
关键词 Heteroscedastic function estimation heteroscedasticity testing mean regression function quantile difference. 估计方法 异方差 分位数 检测 统计模型 方差函数 回归函数 回归分析
  • 相关文献

参考文献2

二级参考文献21

  • 1Li K C. Sightseeing with SIR: A transformation based projection pursuit method. Technical report,Dept. Mathematics, UCLA, 1989.
  • 2Li K C. Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist.Assoc., 1991, 86: 316-327.
  • 3Duan N and Li K C. Slicing regression: A link-free regression method. Ann. Statist., 1991, 19:505-530.
  • 4Hsing T and Carroll R J. An asymptotic theory for sliced inverse regression. Ann. Statist. Assoc.,1992, 20: 1040-1061.
  • 5Zhu L and Ng K W. Asymptotics of sliced inverse regression. Statistica Sinica, 1995, 5: 727-736.
  • 6Yang S S. General distribution theory of the concomitants of order statistcs. Ann. Statist., 1977,5: 996-1002.
  • 7Gasser T, Sroka L and Christine J S. Residual variance and residual pattern in nonlinear regression.Biometrika, 1986, 73: 625-633.
  • 8Muller H G and Stadtmuller U. Estimation of heteroscedasticity in regression analysis. The Annals of Statistics., 1987, 15: 610-625.
  • 9Hall P, Kay J W and Titterington D M. Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika, 1990, 77: 521-527.
  • 10Hoeffding W and Robbins H. The central limit theorem for dependent random variables. Duke Math. J., 1948, 15: 773-780.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部