期刊文献+

Photonic crystal fiber Mach-Zehnder interferometer with microholes ablated by a femtosecond laser for refractive index sensing

Photonic crystal fiber Mach-Zehnder interferometer with microholes ablated by a femtosecond laser for refractive index sensing
下载PDF
导出
摘要 A new structure of the photonic crystal fiber(PCF)based Mach-Zednder interferometer(MZI)is fabricated and presented.The structure has microholes ablated by a femtosecond laser.The fringe visibility can be enhanced more than 10 dB compared with the interferometer without a microhole.The interferometer is characterized by sodium chloride solutions for refractive index(RI)sensing.The RI sensitivities are greatly increased by the hole fabrication since it directly changes the cladding modes of the PCF.For the interferometer sensor with two holes,the RI sensitivity is 157.74 nm/RIU,which is 5 times than that of the sensor without a microhole.Microholes ablation with a femtosecond laser on PCF can increase the sensor's sensitivity dramatically.Femtosecond laser has a wide application prospect in the field of performance improvement of the sensors. A new structure of the photonic crystal fiber(PCF)based Mach-Zednder interferometer(MZI)is fabricated and presented.The structure has microholes ablated by a femtosecond laser.The fringe visibility can be enhanced more than 10 dB compared with the interferometer without a microhole.The interferometer is characterized by sodium chloride solutions for refractive index(RI)sensing.The RI sensitivities are greatly increased by the hole fabrication since it directly changes the cladding modes of the PCF.For the interferometer sensor with two holes,the RI sensitivity is 157.74 nm/RIU,which is 5 times than that of the sensor without a microhole.Microholes ablation with a femtosecond laser on PCF can increase the sensor's sensitivity dramatically.Femtosecond laser has a wide application prospect in the field of performance improvement of the sensors.
出处 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期77-80,共4页 北京理工大学学报(英文版)
关键词 photonic crystal fiber(PCF)sensor fs laser fabrication refractive index sensing photonic crystal fiber(PCF)sensor fs laser fabrication refractive index sensing
  • 相关文献

参考文献12

  • 1Ginu R, Sunish M, Gerald F, et al. A liquid crystal coated tapered photonic crystal fiber interferometer [J]. Journal of Optics, 2011, 13 ( 1 ) : 015403-1- 015403-7.
  • 2Bock W J, Eftimov T A, Mikulic P, et al. An inline core-cladding intermodal interferometer using a pho- tonic crystal fiber [ J ]. Journal of Lightwave Tech- nology, 2009,27(17): 3933-3939.
  • 3LimJ H, Lee K S, Kim J C, et al. Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure [J]. Optics Letters, 2004,29 (4) : 331 -333.
  • 4Minkovich V, Villatoro J, Monz6n H D, et al. Holey fiber tapers with resonance transmission for high- resolution refractive index sensing [ J ]. Optics Ex- press, 2005,13(19): 7609-7614.
  • 5Jha R, Villatoro J, Badenes G. Ultrastable in reflec-tion photonic crystal fiber modal interferometer for accurate refractive index sensing [ J]. Applied Physics Letters, 2008,93 ( 19 ) : 191106-1-191106-3.
  • 6Villatoro J, Kreuzer M P, Jha R, et al. Photonic crystal fiber interferometer for chemical vapor de- tection with high sensitivity [J]. Optics Express, 2009,17(3) : 1447 -1453.
  • 7Choi H Y, Kim M J, Lee B H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber [J]. Optics Express, 2007,15(9) : 5711 -5720.
  • 8Geng Y, Li X, Tan X, et al. A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges [ J ]. Applied Physics B: Lasers and Optics, 2011,102(3) : 595 -599.
  • 9徐峰,李灿,任东旭,卢璐,吕卫卫,冯飞,俞本立.Temperature-insensitive Mach-Zehnder interferometric strain sensor based on concatenating two waist-enlarged fiber tapers[J].Chinese Optics Letters,2012,10(7):11-14. 被引量:9
  • 10Chen D, Cheng X, Tam H Y. Hydrostatic pressure sensor based on gold-jacketed spherical end hol- low-core photonic bandgap fibre [ J]. Electronics Letters, 2012,48 (19) : 1228 - 1230.

二级参考文献16

  • 1O. Frazao, P. Caldas, F. M. Araujo, L. A. Ferreira, and J. L. Santos, Opt. Lett. 32, 1974 (2007).
  • 2Y. Liu and L. Wei, Appl. Opt. 46, 2516 (2007).
  • 3F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, IEEE Photon. Technol. Lett. 21, 76 (2009).
  • 4T. Zhao, Y. Gong, Y. Rao, Y. Wu, Z. Ran, and H. Wu, Chin. Opt. Lett. 9, 050602 (2011).
  • 5C.-Y. Lin, L. A. Wang, and G.-W. Chern, J. Lightwave Technol. 19, 1159 (2001).
  • 6Y. Lin, J. A. R. Williams, and I. Bennion, IEEE Photon. Technol. Lett. 12, 531 (2000).
  • 7J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, Opt. Lett. 29, 346 (2004).
  • 8L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, Opt. Express 16, 11369 (2008).
  • 9B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, Opt Express 16, 19291 (2008).
  • 10H. Y. Choi, M. J. Kim, and B. H. Lee, Opt. Express 15, 5711 (2007).

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部