期刊文献+

基于贝叶斯网络的故障诊断系统性能评价 被引量:16

Performance evaluation of fault diagnosis system based on Bayesian network
原文传递
导出
摘要 故障诊断系统的性能评价是开发和验收故障诊断系统不可或缺的重要环节.针对基于贝叶斯网络(BN)故障诊断系统的性能评价需要,考虑系统诊断结果真实分布,提出采用二项分布参数估计方法来计算诊断准确度的置信区间,采用准确度期望值及其置信区间全面客观评价诊断模型的性能,形成贝叶斯网络模型诊断能力的量化评价指标,为诊断结果的可接受、可信程度以及诊断模型的训练充分性提供参考依据.最后通过燃油系统故障诊断实例验证所述性能评价的有效性. Assessing whether a newly developed fault diagnosis system is effective is an important issue to ensure diagnosis system performance. Due to the requirement of evaluating the performance of the fault diagnosis system based on Bayesian network( BN),an evaluation method using a modified binomial distribution was developed,considering the real distribution of diagnosis results. The parameters of the modified binomial distribution were estimated using training data during the training process of fault diagnosis system,and both diagnosis accuracy and confidence interval of a diagnostic system could be calculated simultaneously by this evaluation method. The quantitive evaluation indices provided by the proposed evaluation method greatly contributed to the evaluation of acceptability and reliability of a Bayesian network-based diagnosis system,and were of great significance in supporting diagnosis system training. In conclusion,the effectiveness of the proposed evaluation method was validated by an example concerning a fault diagnosis system for the aircraft fuel system.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第1期35-40,共6页 Journal of Beijing University of Aeronautics and Astronautics
关键词 贝叶斯网络(BN) 诊断 性能 准确度 置信区间 Bayesian network(BN) diagnosis performance accuracy confidence interval
  • 相关文献

参考文献18

  • 1HECKERMAN D. l,earning in graphical models[M]. Berlin: Springer Netherlands, 1998:301-354.
  • 2LUXHOJ J T, COlT D W. Modeling low pnbability/high ccmsc- quence events: An aviation safety risk model[ C ]//Proceedings of tile Reliability & Maintainability Symposium (RAMS). Washington, D. C. : IEEE Computer Seiety, 2006:215-220.
  • 3徐璡,许朝霞,许文杰,王又闻,刘涛,夏春明,郭睿,王忆勤.基于贝叶斯网络原理的835例冠心病病例中医证候分类研究[J].上海中医药杂志,2014,48(1):10-13. 被引量:31
  • 4DALLA V L,GIUDICI P. A Bayesian apprtmch to estimate the marginal loss distributions in operational risk management[ J ]. Computational Statistics, 2008,52 ( 6 ) :3107 -3127.
  • 5BASIR O,YUAN X H. Engine fault diagnosis based on muhi- sensor informalion fusion using Dempsler-Shafer evidence lheo- ry [ J ]. lnformatian Fusion, 2007,8 ( 4 ) :379-386.
  • 6李业波,李秋红,黄向华,赵永平.航空发动机气路部件故障融合诊断方法研究[J].航空学报,2014,35(6):1612-1622. 被引量:27
  • 7DAS S,HARRIS M. Estimating accuracy and confidence inter- val of an intelligent diagnostic reasoner system [ C ]//Proceed- ings of the 2009 IEEE Autotestcoo. Piscataway, NJ: IEEE Press ,2009 : 288 -291.
  • 8WINTERBOTTOM A. The interval estimation of system reliabil- ity from eomponent test data [ J ]. Operations Researeh, 1984, 32 ( 3 ) :628-640.
  • 9CHOI A,DARWICHE A,ZHENG L, et al. Machine learning and knowledge discovery h)r engineering systems health man- agement [ M ]. Boca Raton, FL : Chapman anti HalI/CRC Press, 2011,39-66.
  • 10段荣行,董德存,赵时旻.采用动态故障树分析诊断系统故障的信息融合法[J].同济大学学报(自然科学版),2011,39(11):1699-1704. 被引量:13

二级参考文献76

共引文献148

同被引文献134

引证文献16

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部