期刊文献+

最大相关熵准则自适应滤波器的分数阶长算法 被引量:4

Fractional tap-length algorithm for adaptive filters under maximum correntropy criterion
原文传递
导出
摘要 对自适应滤波器最佳阶长的准确估计可以有效平衡自适应算法的稳态性能与计算复杂度,而基于最小均方差(MMSE)准则的变阶长最小均方(LMS)算法在非高斯噪声环境下的收敛性能变差。针对这一问题,提出一种最大相关熵准则(MCC)自适应滤波器的分数阶长(FT)算法——FT-MCC算法。该算法从MCC自适应滤波器最佳阶长的定义出发,利用不同阶长滤波器产生的相关熵之差实现阶长更新。理论分析和实验表明:相比现有变阶长最小均方算法,FT-MCC算法在非高斯噪声环境中具有较强的鲁棒性;通过恰当的参数选择,算法可较好地实现对最佳阶长的跟踪和估计。 Accurate estimation of the optimum tap-length for the adaptive filter provides a good balance between the steady-state performance and the complexity of the adaptive algorithm. The convergence performance of the variable tap-length least mean square( LMS) adaptive filters under the minimum mean square error( MMSE) criterion deteriorates in the non-Gaussian noise environment. A fractional tap-length( FT) algorithm for the maximum correntropy criterion( MCC) adaptive filters,named FT-MCC algorithm,is proposed to solve the above problem. The proposed algorithm is based on the concept of the optimum tap-length for the MCC adaptive filters. The difference of the correntropy between adaptive filters with different tap-lengths is used to achieve the tap-length update. Both theoretical analysis and simulation result show that the proposed algorithm has strong robustness in non-Gaussian noise environment compared with other variable tap-length LMS algorithm and the optimum tap-length can be well estimated with proper parameter selection.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第2期413-420,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61450008 61301004)~~
关键词 自适应滤波 最大相关熵准则 变阶长算法 分数阶长算法 系统辨识 鲁棒性 adaptive filtering maximum correntropy criterion variable tap-length algorithm fractional tap-length algorithm system identification robustness
  • 相关文献

参考文献19

  • 1TAN Y,HE Z Q,TIAN B Y. A novel generalization of modified LMS algorithm to fractional order [ J ]. IEEE Signal Processing Letters ,2015,22 (9) : 1244-1248.
  • 2SCHOBER R,GERSTACKER W H, LAMPE A. Non-coherent MMSE interference suppression for DS-CDMA [ J ]. IEEE Trans- actions on Communications,2002,50(4) :577-587.
  • 3SLOCK D T M. On the convergence behavior of the LMS and the normalized LMS algorithms [ J]. IEEE Transactions on Sig- nal Processing,1993,41 (9) :2811-2825.
  • 4RIERA-PALOU F,NORAS J M,CRUICKSHANK D G M. Lin- ear equalizers with dynamic and automatic length selection[ J]. Electronics Letters ,2001,37 ( 25 ) : 1553-1554.
  • 5GUY T,TANG K, CUI H J. LMS algorithm with gradient de- scent filter length[ J ]. IEEE Signal Processing Letters,2004,11 (3) :305-307.
  • 6GONG Y, COWAN C F N. An LMS style variable tap-length al- gorithm for structure adaptation[ J]. IEEE Transactions on Sig- nal Processing,2005,53 (7) :2400-2407.
  • 7LI L L, CHAMBERS J A. A novel adaptive leakage factor scheme for enhancement of a variable tap-length learning algo- rithm[ C ] // IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, N J: IEEE Press, 2008:3837-3840.
  • 8XU D J, YIN B, WANG W, et al. Variable tap-length LMS algorithm based on adaptive parameters for TDL structure adap- tion [ J ]. IEEE Signal Processing Letters, 2014, 21 ( 7 ) : 809 -813.
  • 9LIU Z Y. Variable tap-length linear equaliser with variable tap- length adaptation step-size [ J ]. Electronics Letters, 2014,50(8) :587-589.
  • 10ERDOGMUS D,PRINCIPE J C. Generalized information poten- tial criterion for adaptive system training[ J]. IEEE Transactions on Neural Networks ,2002,13 ( 5 ) : 1035-1044.

二级参考文献10

  • 1Tsihrintzis G A and Nikias C L. Fast estimation of the parameters of alpha-stable impulsive interference[J].{H}IEEE Transactions on Signal Processing,1996,(06):1492-1503.
  • 2Ma X Y and Nikias C L. Parameter estimation and blind channel identifications in impulsive signal environments[J].{H}IEEE Transactions on Signal Processing,1995,(12):2884-2997.
  • 3Ma X Y and Nikias C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[J].{H}IEEE Transactions on Signal Processing,1996,(11):2669-2687.
  • 4Cowell D M J,Freear S. Separation of overlapping Linear Frequency Modulated (LFM) signals using the fractional Fourier transform[J].{H}IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2010,(10):2324-2333.
  • 5Bin Abdullah A R,Bin Sha'ameri A Z,Bin Jidin A. Classification of power quality signals using smooth-windowed Wigner-Ville distribution[A].Songdo Convensia,Incheon,Korea,Oct.10-13,2010.1981-1985.
  • 6邱天爽;张旭秀;李小兵.统计信号处理--非高斯信号处理及其应用[M]{H}北京:电子工业出版社,2004139-172.
  • 7Xu S W and Shui P L. Nonparametric detection of frequency modulated signals using fractional Fourier transform[J].{H}Electronics Letters,2010,(09):649-650.
  • 8杨伟超,赵春晖,成宝芝.Alpha稳定分布噪声下的通信信号识别[J].应用科学学报,2010,28(2):111-114. 被引量:18
  • 9赵春晖,杨伟超,马爽.基于广义二阶循环统计量的通信信号调制识别研究[J].通信学报,2011,32(1):144-150. 被引量:27
  • 10赵春晖,杨伟超,杜宇.采用分数低阶循环谱相干系数的调制识别[J].应用科学学报,2011,29(6):565-570. 被引量:10

共引文献16

同被引文献39

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部