期刊文献+

随机-认知不确定性的相关性分析模型及可靠性计算方法 被引量:7

An Aleatory and Epistemic Mixed Uncertainty Model Considering Parametric Correlation and Its Reliability Analysis
下载PDF
导出
摘要 针对工程中同时存在随机和认知不确定性的问题,提出了一种考虑相关性的概率-证据混合不确定性模型及相应的结构可靠性分析方法。首先引入样本相关系数来描述概率变量之间、证据变量之间以及概率和证据变量之间的相关性,通过一个转换矩阵将原问题中相关的变量转换为相互独立的变量,并构建了一个等效的概率-证据混合可靠性模型。然后将其转化为一系列概率-区间混合可靠性分析模型,并总结了嵌套优化分析迭代格式来求解失效概率区间。最后提供了三个数值算例验证该方法的有效性。 A probability and evidence hybrid uncertainty model considering parametric correlation was proposed and a corresponding reliability analysis method for problems with both aleatory and epistemic uncertainties was studied.Firstly,sample correlation coefficients were introduced to describe the correlation among probability variables,evidence variables as well as probability and evidence variables.Correlated parameters were transformed into independent ones through a matrix transformation and an equivalent probability-evidence hybrid model was built.Then the hybrid model was transformed into a series of probability-interval models in subspaces and a nested optimization analysis iterative format was summarized to obtain the failure probability interval.At last,three numerical examples were provided to verify the validity of the proposed method.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2016年第7期925-933,共9页 China Mechanical Engineering
基金 国家自然科学基金资助项目(11172096 51222502) 霍英东基金资助项目(131005) 湖南省杰出青年基金资助项目(14JJ1016)
关键词 混合可靠性 随机不确定 认知不确定 样本相关系数 hybrid reliability aleatory uncertainty epistemic uncertainty sample correlation coefficient
  • 相关文献

参考文献32

  • 1Guo J, Du X P. Sensitivity Analysis with Mixture of Epistemic and Aleatory Uncertainties[J]. AIAA Jour- nal,2007, 45(9) : 2337-2349.
  • 2Rowe W D. Understanding Uncertainty [ J ]. Risk Analysis, 1994,14(5) .- 743-750.
  • 3Helton J C. Uncertainty and Sensitivity Analysis in the Presence of Stochastic and Subjective Uncertainty[J]. Journal of Statistical Computation and Simulation, 1997,57(1/4) : 3-76.
  • 4Hasofer A M, Lind N C. Exact and Invariant Second- moment Code Format[J]. Journal of the Engineering Mechanics Division, 1974, i00(1): 111-121.
  • 5Rackwitz R, Fiessler B. Structural Reliability under Combined Random Load Sequences[J]. Computers Structures, 1978, 9(5): 489-494.
  • 6Breitung K W. Asymptotic Approximation for Multi- normalintegrals[J]. Journal of Engineering Mechanics, 1984, 110(3): 357-366.
  • 7Rubinstein R Y, Kroese D P. Simulation and the Monte-Carlo Method[M]. 2nd ed. New York: Wiley, 2007.
  • 8Du X P, Chen W. Sequential Optimization and Reliabil- ity Assessment Method for Efficient Probabilistic De- sign[J]. Journal of Mechanical Design, 2004, 126(2): 225-233.
  • 9Liang J H, Mourelatos Z P, Nikolaidis E. A Single- Loop Approach for System Reliability-based Design Optimization[J]. Journal of Mechanical Design, 2007, 129(12) : 1215-1224.
  • 10Sharer G. A Mathematical Theory of Evidence[M]. Princeton, NJ : Princeton University Press, 1976.

同被引文献56

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部