期刊文献+

基于深度特征的句子级文本情感分类 被引量:1

Classification of Texts Sentiment Based on Deep Feature for Sentence Level
下载PDF
导出
摘要 研究词深度特征池化法的句子级情感分类特征表示,在进行词向量学习时,首先利用中科院分词器对语料进行分词,通过word2vec中的CBOW模型计算语料中词的深度特征词向量;在情感分类过程中,首先对词深度特征采用均值、最值等池化方法获得整句话的特征,并以此作为神经网络模型的输入,通过一个线性层、Sigmoid激活层以及线性分类标注层,来判决得到该句的情感倾向。通过在当当书评语料上进行实验,结果表明均值与最值池化拼接的特征方法取得较好的分类效果,能够更好地表征句子级情感特征。 Studies the pooling method of sentence level sentiment classification characteristic, to learn the word vector, uses ICTCLAS2016 to segments the sentences of corpus, and the depth feature vectors are calculated by CBOW model in word2 vec. In the classification of texts sentiment, gets the sentence feature by pooling the word depth features in a variety of ways, which is the input of neural network model.And then, those features will input a linear layer, sigmoid active layer and a classification linear layer to get the sentence emotional tendencies. The results of Book Review Corpus in Dangdang shows that the combination of the meaning and extreme value pooling method can achieve better classification results, which have a better express to characterize the sentence level emotional features.
作者 王波 刘玉娇
出处 《现代计算机》 2016年第6期3-8,共6页 Modern Computer
基金 四川省科技支撑计划项目(No.2012GZ0091) 四川大学青年基金项目(No.2012SCU11033)
关键词 文本情感 极性判别 深度特征 SIGMOID Text Sentiment Polarity Judgment Depth Features Sigmoid
  • 相关文献

参考文献18

  • 1Yang A M, Zhou Y M, Lin J H. A Method of Chinese Texts Sentiment Classification Based on Bayesian Algorithm[C]. Applied Me- chanics and Materials. Trans Tech Publications, 2012,263: 2185-2190.
  • 2Xianghua F, Guo L, Yanyan G, et al. Multi-Aspect Sentiment Analysis for Chinese Online Social Reviews Based on Topic Modeling and HowNet Lexicon[J]. Knowledge-Based Systems,2013,37: 186-195.
  • 3Wang H, Yin P, Yao J, et al. Text Feature Selection for Sentiment Classification of Chinese Online Reviews[J]. Journal of Experi- mental & Theoretical Artificial Intelligence, 2013,25 (4): 425-439.
  • 4王勇,吕学强,姬连春,肖诗斌.基于极性词典的中文微博客情感分类[J].计算机应用与软件,2014,31(1):34-37. 被引量:29
  • 5孙建旺,吕学强,张雷瀚.基于词典与机器学习的中文微博情感分析研究[J].计算机应用与软件,2014,31(7):177-181. 被引量:50
  • 6朱艳辉,栗春亮,徐叶强,柳位平.一种基于多重词典的中文文本情感特征抽取方法[J].湖南工业大学学报,2011,25(2):42-46. 被引量:10
  • 7刘玉娇,琚生根,伍少梅,苏翀.基于情感字典与连词结合的中文文本情感分类[J].四川大学学报(自然科学版),2015,52(1):57-62. 被引量:17
  • 8Zhang D, Xu H, Su Z, et al. Chinese Comments Sentiment Classification Based on Word2vec and SVM PerJ]. Expert Systems with Applications, 2015,42 (4):1857-1863.
  • 9Huang Z,Zhao Z, Liu Q, et al. An Unsupervised Method for Short-Text Sentiment Analysis Based on Analysis of Massive Data[M]. In- telligent Computation in Big Data Era. Springer Berlin Heidelberg, 2015:169-176.
  • 10Yuan Z, Purver M. Predicting Emotion Labels for Chinese Microblog Texts[M]. Advances in Social Media Analysis. Springer Interna- tional Publishing, 2015 : 129-149.

二级参考文献43

共引文献127

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部