期刊文献+

基于阈值和图论的图像分割算法研究 被引量:1

Image segmentation algorithm based on thresholds and graph theory
下载PDF
导出
摘要 图论是一种新的图像分割算法,近几十年来,一直是国内外的研究热点.但当图像很大时图论分割算法很耗时.针对这个缺点,提出了一种基于阈值和图论的图像分割算法.该算法先对图像进行平滑、锐化等预处理,然后再用最大方差法把目标和背景分隔开,最后对目标图像应用图论最小生成树(MST)的方法进行再分割.通过一系列的图像试验,该算法能够较准确地分割图像.与传统的图论分割算法相比,该算法对大部分图像有较好的分割效果. Graph theory is a new image segmentation algorithm, which has been a hot research topic both at home and abroad in recent decades. But when the image is very large, it is time consuming to use the graph theory. In view of this shortcoming, this paper proposes an image segmentation algorithm based on threshold and graph theory, which firstly do the image smoothing, sharpening and other pretreatment; then the maximum variance method is used to separate the target and the background; finally, the spanning tree minimum(MST)method is used to resegment the target image using graph theory. Through a series of image experiments, the algorithm can accurately segment the image. Compared with the traditional graph theory segmentation algorithm, this algorithm has a good segmentation effect on most of the images.
机构地区 闽南理工学院
出处 《宁德师范学院学报(自然科学版)》 2016年第1期62-66,共5页 Journal of Ningde Normal University(Natural Science)
关键词 图论 阈值 最大方差阈值 图像分割 graph theory threshold maximum variance threshold image segmentation
  • 相关文献

参考文献8

二级参考文献73

  • 1J C Gamiol ,S J Belongie,S Majumdar.Normalized Cuts for Spinal MRI Segmentation[C].In : Proc CARS 2002, Paris, France,2002.
  • 2A S Frangakis,R Hegerl.Segmentation of biomedical images with eigenvectors[C].In :Proc IEEE International Symposium on Biomedical Imaging, 2002 : 90-93.
  • 3C Florin,R Moreau-Gobard,J Williams.Automatic Heart Peripheral Vessels Segmentation Based on a Normal MIP Ray Casting Technique.Springer, 2004, LNCS 3216:483-490.
  • 4L Grady,G Funka-Lea.Multi-label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials.Springer, 2004 ,LNCS 3117:230-245.
  • 5J Shi,J Malik.Motion Segmentation and Tracking Using Normalized Cuts[C].In:Intl Conf on Computer Vision,1998.
  • 6J Park,H Zha,R Kasturi.Spectral Clustering for Robust Motion Segment ation,Springer, 2004, LNCS 3024:390-401.
  • 7J Malik,S Belongie,T Leung et al.Contour and texture analysis for image segmentation[J].Intl Journal of Computer Vision,2000; 5 ( 1 ) : 7- 27.
  • 8N Xu,R Bansal,N Ahuja.Object segmentation using graph cuts based active contours[C].In:Proc of the IEEE Computer Society Conf on Computer Vision and Pattern Recognition,2003.
  • 9SXYu.[D].Carnegie Mellon University,Pittsburgh,Pennsylvania,2003.
  • 10D Hale,J Emanuel.Semi-Supervised Image Segmentation by Parametric Distributional Clustering[C].In:Energy Minimization Methods in Computer Vision and Pattern Recognition,Springer,2003,LNCS 2683 : 229-245.

共引文献74

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部