期刊文献+

一种功控状态保持低功耗C单元设计

Design: State Retention C-element Using Power Gating Technique
下载PDF
导出
摘要 提出了一种新的具有状态保持功能的功控低功耗C单元,该C单元采用高阈值NMOS管作为功控开关,以减小C单元休眠期间的漏功耗,并利用交叉耦合的高阈值反相器构成数据保持单元,保持电路休眠状态时的数据.版图后仿真结果表明:该C单元具有正确的逻辑功能,与传统弱反馈C单元相比,其漏功耗下降86.6%,动态功耗下降7.6%,可在基于功控技术的低功耗异步电路设计中应用. In CMOS VLSI deign, the power density increases rapidly as the techniques get more complex. To tackle this problem, the low power design has become a critical issue concerned. Asynchronous design where the global clock is replaced by a local communication protocol has the potential power-saving advantages. One of the primitives cells used in asynchronous control circuits is the C-element. In this paper, a new low-power C-Element is proposed with state retention aimed at using the low power asynchronous micropipeline. A high-Vth NMOS transistor is utilized to reduce the leaked power consumption in the sleep mode. The state of the C-Element preserves in the high-Vth cross-coupled inverters during the power-down period. The post-layout simulation results show that the proposed low-power C-Element possesses the correct logic function, and it achieves a reduction of 86.6% on leaked power consumption and 7.6% on the dynamic power consumption compared with the conventional weak feedback C-Element. It may reach the conclusion that the proposed power gating approach is more suitable for low power asynchronous circuits design.
出处 《宁波大学学报(理工版)》 CAS 2016年第2期23-28,共6页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(61271137) 浙江省教育厅科研项目(Y201329962)
关键词 异步电路 功控技术 低功耗 C单元 状态保持 asynchronous circuit power gating technique low-power C-element state retention
  • 相关文献

参考文献17

  • 1CHANDRAKASAN A P, SHENG S, BRODERSEN R W. Low-power CMOS digital design[J]. IEICE Transactions on Electronics, 1992, 75(4):371-382.
  • 2BARROSO L A, H?LZLE U. The case for energy- proportional computing[J]. IEEE Computer, 2007, 40(12) 33-37.
  • 3ROY K, MUKHOPADHYAY S, MAHMOODI-MEIMAND H. Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits[J]. Proceedings of the IEEE, 2003, 91(2):305-327.
  • 4FURBER S B, DAY P. Four-phase micropipeline latch control circuits[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1996, 4(2):247-253.
  • 5SPARSO J. Principles of asynchronous circuit design-A systems perspective[M]. London: Kluwer Academic Publishers, 2006:1-152.
  • 6SUTHERLAND I E. Micropipelines[J]. Communications of the ACM, 1989, 32(6):720-738.
  • 7WINSTEAD C, ELHAMOUI M. Reducing clock jitter by using muller-celements[J]. Electronics Letters, 2009, 45(3):150-151.
  • 8TREVISAN M M, GEHM M F, VILAR C N L. Beware the dynamic C-element[J]. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2014, 22(7): 1644-1647.
  • 9KIM K K, KIM Y B, CHOI M, et al. Leakage minimization technique for nanoscale CMOS VLSI[J]. IEEE Design & Test of Computers, 2007(4):322-330.
  • 10MUTOH S, DOUSEKI T, MATSUYA Y, et al. 1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS[J]. IEEE Journal of Solid- State Circuits, 1995, 30(8):847-854.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部