期刊文献+

一种基于信息保持的跨数据集图像分类方法 被引量:3

A Cross-dataset Image Classification Method Based on Information-keeping
下载PDF
导出
摘要 跨数据集图像分类是在图像分类应用中经常面临的问题。由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能明显下降。为此,根据数据信息提出一种新的跨数据集图像分类方法。将主成分分析中特征信息保留的思想引入到基于L1特征选取的Logistic回归中,从而在选取图像特征时有效保持数据集中的高信息含量特征。实验结果表明,在多个常用跨数据集图像分类中,该方法能获得较好的图像分类效果。 Cross-dataset image classification is a common problem in the real applications of image classification. Even though training data and testing data are related in the cross-domain classification, there are some differences between them. And this leads the performance of traditional classifier in cross-dataset classification dramatically reduced. In order to solve this problem,this paper proposes a novel cross-dataset image classification method. The new method introduces the idea of feature information reservation of Principal Component Analysis (PCA) into Logistic return based on L1 logistic regression, so that it can keep high information features in dataset when selecting image features. Experimental results show that in commonly used cross-dataset image classification,the method can obtain good image classification effect.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第4期255-258,265,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61370157)
关键词 图像分类 跨数据集 特征选择 LOGISTIC回归 稀疏主成分分析 转换学习 image classification cross-dataset feature selection Logistic regression sparse Principal Component Analysis (PCA) transformative learning
  • 相关文献

参考文献14

  • 1Scheirer W J, Rocha A R, Sapkota A, et al. Toward Open Set Recognition [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35 ( 7 ) : 1757- 1772.
  • 2孟佳娜,段晓东,杨亮.基于特征变换的跨领域产品评论倾向性分析[J].计算机工程,2013,39(10):167-171. 被引量:6
  • 3Pan S J,Yang Qiang. A Survey on Transfer Learning [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2010,22(10) :1345-1359.
  • 4Long Mingsheng,Wang Jianmin, Ding Guiguang, et al. Transfer Feature Learning with Joint Distribution Adaptation[C]//Proceedings of International Conference on Computer Vision. Washington D. C. ,USA: IEEE Press, 2013:2200-2207.
  • 5Gretton A,Borgwardt K M, Rasch M J, et al. A Kernel Method for the Two-Sample-Problem [ C ]//Proceedings of Advances in Neural Information Processing Systems. Washington D. C. , USA : IEEE Press, 2006 : 513 -520.
  • 6Pan S J,Tsang I W, Kwok J T, et al. Domain Adaptation via Transfer Component Analysis [ J ]. IEEE Transactions on Neural Networks ,2011,22 ( 2 ) : 199-210.
  • 7Long Mingsheng,Ding Guiguang, Wang Jianmin, et al. Transfer Sparse Coding for Robust Image Representa- tion [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA :IEEE Press ,2013:407-414.
  • 8Long Mingsheng, Wang Jianmin, Sun Jiaguang, et al. Domain Invariant Transfer Kernel Learning [ J ]. IEEE Transactions on Knowledge and Data Engineering,2014, 27(6) :1519-1532.
  • 9赵谦,孟德宇,徐宗本.L_(1/2)正则化Logistic回归[J].模式识别与人工智能,2012,25(5):721-728. 被引量:16
  • 10顾鑫,王士同.大样本多源域与小目标域的跨领域快速分类学习[J].计算机研究与发展,2014,51(3):519-535. 被引量:6

二级参考文献17

  • 1蒋盛益,谢照青,余雯.基于代价敏感的朴素贝叶斯不平衡数据分类研究[J].计算机研究与发展,2011,48(S1):387-390. 被引量:21
  • 2邓卫兵.A LIMITED MEMORY QUASI-NEWTON METHOD FOR LARGE SCALE PROBLEM[J].Numerical Mathematics A Journal of Chinese Universities(English Series),1996,5(1):71-79. 被引量:3
  • 3Chan Kam-Tong, King I. Let's Tango: Finding the Right Couple for Feature-opinion Association in Sentiment Analysis[C]//Proc. of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin, Germany: Springer-Verlag, 2009.
  • 4Somasundran S, Wiebe J, Ruppenhofer J. Discourse Level Opinion Interpretation[C]//Proc. of the 22nd International Conference on Computational Linguistics. Manchester, UK: Is. n.], 2008.
  • 5Blitzer J, Dredze M, Pereira F. Biographies, Bollywood, Boomboxes and Blenders: Domain Adaptation for SentimentClassification[C]//Proc. of the 45th Annual Meeting of the Association of Computational Linguistics. Prague, Czech Republic: [s. n.], 2007.
  • 6Blitzer J, McDonald R R, Pereira F. Domain Adaptation with Structural Correspondence Learning[C]//Proc. of Conference on Empirical Methods in Natural Language. Sydney, Australia: [s. n.], 2006.
  • 7Sinno J P, Ni Xiaochuan, Sun Jiantao, et al. Cross-domain Sentiment Classification via Spectral Feature Alignment[C]// Proc. of the 19th International Conference on World Wide Web. New York, USA: ACM Press, 2010.
  • 8Zhang Di, Xue Guirong, Yu Yong. Iterative Reinforcement Cross-domain Text Classification[C]//Proc. of the 4th Inter- national Conference on Advanced Data Mining and Appli- cations. Chengdu, China: [s. n.], 2008.
  • 9Meng Jiana, Lin Hongfei. Transfer Learning Based on Graph Ranking[C]//Proc. of the 9th International Conference on Fuzzy Systems and Knowledge Discovery. IS. 1.]: IEEE Press, 2012.
  • 10孟佳娜.迁移学习在文本分类中的应用研究[D].大连:大连理工大学,2011.

共引文献25

同被引文献20

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部