期刊文献+

三角晶格有耗色散光子晶体的能带结构分析 被引量:4

Band Structure of Triangular Lattices Photonic Crystals with Lossy and Dispersive Materials
下载PDF
导出
摘要 为探讨有耗色散媒质光子晶体的特性,引入一种计算有耗色散光子晶体能带结构的方法,基于有限元法将能带结构的计算简化为求解关于Block波矢的二次特征值问题,可以有效地得到色散材料光子晶体的能带结构和特征模.分析了三角晶格介质光子晶体能带结构并与现有方法对比,结果表明两种方法在TM模和TE模下得到的能带结构完全相同,验证了该方法的有效性.分析了无耗及有耗色散光子晶体的能带结构,发现无耗光子晶体场强集中于色散媒质与空气的接触面,并呈现出明显的表面等离激元特性,具有对称性,而有耗光子晶体场强减小,表面等离激元变弱,对称性被破坏.相关结果可为有耗色散光子晶体以及表面等离激元的研究提供参考. In order to explore the properties of photoniccrystals,the finite element method was introduced to calculate the band structure of lossy and dispersive photonic crystals with triangular lattice.By using this method,the calculation of band structure is reduced to a quadratic eigenvalue problem which the eigenvalue is the Bloch wave vector,the band structure and eigenmode can be obtained more effectively.The band structure in the TE and TM mode of photonic crystals with dielectric material in triangular lattice was compared with the reference to demonstrate the accuracy of the method.Furthermore,the dispersion relation of the lossy and lossless photonic crystals was also given by the proposed method.The symmetry and surface plasmon polarizations properties are found in lossless photonic crystals and electric field distributions are concentrated on the interface of dispersive materials and air.It is demonstrated in the lossy photonic crystals that the symmetry is destroyed,the surface plasmon polarizations properties are weakened and electric field density is decreased.The results can be used as theoretical basis and reference for studying the lossy photonic crystals and surface plasmon polarizations.
出处 《光子学报》 EI CAS CSCD 北大核心 2016年第3期56-61,共6页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.61101064 51277001 61471001) 教育部博士学科点专项基金(No.20123401110009) 安徽省自然基金(Nos.2013SQRL065ZD 1508085JGD03 1508085QF130) 教育部新世纪优秀人才支持计划(No.NCET-12-0596)资助~~
关键词 光子晶体 能带结构 有限元法 光子带隙 表面等离激元 Photonic crystals Band structure Finite element method Photonic band gap Surface plasmon
  • 相关文献

参考文献19

  • 1NODA S, CHUT1NAN A, IMADA M. Trapping and emission of photons by a single defect in a photonic bandgap structure[J]. Nature, 2000, 407(6804): 608-610.
  • 2PAINTER O, LEER K, SCHERER A, et al. Two- dimensional photonic band-gap defect mode laser[J]. Science, 1999, 284(11) : 1819-1821.
  • 3FANS H, JOHNSONS G, JOANNOpOULOSJ D, et al. Waveguide branches in photonic crystals[J]. Optical Society of America B, 2001, 18(2) : 162-165.
  • 4牛凯坤,李学伟,张俊龙,沈晶,黄志祥,吴先良.掺杂硅片与电磁超材料间的Casimir平衡恢复力[J].光子学报,2014,43(11):11-14. 被引量:2
  • 5DAVANCOM, URZHUMOV Y, SHVETS G. The complex bloeh bands of a 2D plasmonic crystal displaying istropic negative re{raetion[J]. Optics Express, 2007, 15(15): 9681- 9691.
  • 6GUO S P, WU F, SACHARIA A, etal. Photonica band gap analysis using finite-difference-frequency-domain method[J]. Optics Express, 2004, 12(8) : 1741-1746.
  • 7QIU M, HES L. Large complete band gap in two-dimensional photonic with elliptic air holes[J]. Physical Review B, 1999, 60(15) : 10610-10612.
  • 8BOTTENL C, ASATRYANA A, LANGTRYT N, et al. Semianalytic treatment for propagation in finite photonie crystal waveguides[J]. Optics Letters, 2003, 28 (10) : 854- 856.
  • 9LIZ Y, LINL L. Photonic band structures solved by a plane- wave-based transfer-matrix method[J], Ph ycical Review E, 2003, 67(4): 046607.
  • 10HUANGK C, BIENSTMANP, JOANNOPOULOSJ D, et al. Field expulsion and reconfiguration in polaritonic photonie crystals[J]. PhysicalReview Letters, 2003, 90(19) : 196402- 196405.

二级参考文献55

  • 1ZHC)U Wei-dong. MENG Tao. LI Chen, et al. Microst ructured surface design for omnidirectional lnlireflection coatings on sober cells[J]. Journal of Applied Physics. 2007. 102(10): 103-105.
  • 2CHOPRA K L. PAUISON P D. DUTTA V. Thin-fihn solar ceils: An overview[J]. progress In Phot.vollaics: Reseurch .lnd Applications. 2001. 12(2-3): 69- 92.
  • 3ZENG 1: Y1 Y, HONC C. et al. Efficiency enhancement in Si solar cells by textured photonic cryslal back reflector [J]. Applied Physics Letters. 2006, 89(11): 111-111.
  • 4HAASE C, STIEBIG H. Thin-film silicon solar cells wilh efficient periodic light Irapping texture[J]. Applied Physics l.etters. 2007, 91(6): 06-1 116.
  • 5ZIA R. SEI.KER M D. cATRYSSE P B. et al. Geometries and materials for subwavelenglh surface phsmon nmdes[J]. Journal of the Optical Society of America ., 2001, 21(12) : 21 12-211 6.
  • 6DITLBACHER H. KRENN J R. FEI,IDJ N, et al. Fluoreseence imaging nl surface plasmon lields[J], Applied Physics l.etters, 2002, 811(.3): 101-406.
  • 7RAETHER H. Surface plasmons on smooth and rough surfaces and on gralings[M]. Berlin: Springer Verlag, 1088.
  • 8WANG C C D, CHPOY W C H, DUAN Chun-hui, et al, Optical and cleclrical effects of gold nanoparticles in lhe active layer of polymer solar cells [J], Jourmd of Materiuls Chemistrv, 20110 22:1206- 1211.
  • 9SUN Chen, LI Chuan-hao, SHI Rui ying, et al. A study ot7 in171uences o17 metal nanoparticles on absorbing efficiency of organic solar cells[J]. Acta Photonica Sinica, 2012, 41(11) 1335-1341.
  • 10QIU M, HES L. A nonorthogonal finite-difference time- domain method for computing the band structure o{ a two- dimensional photonic crystal with dielectric and metallic inclusions[J]. Journal of Applied Physics, 2000, 87 (12) : 8268-8275.

共引文献8

同被引文献8

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部