期刊文献+

流道对ab-PBI膜高温燃料电池阴极传质的影响 被引量:3

Effects of the Flow Field on Mass Transfer in the Cathode of ab-PBI Fuel Cell
下载PDF
导出
摘要 目的研究高温质子交换膜燃料电池的流道深度及其宽度对于提高其性能的影响.方法建立了一个二维、单相、稳态数学模型模拟研究高温质子交换膜燃料电池阴极氧气和水蒸气分布规律,分析流道深度及宽度对电池阴极中氧气、水蒸气浓度分布的影响.结果在高温质子交换膜燃料电池阴极中,氧气浓度沿着流道方向降低,而水分浓度则升高;从催化剂层到扩散层,氧气浓度升高,而水分浓度降低.在一定范围内增大流道深度,电池阴极催化剂层和扩散层内氧气浓度越大,水分浓度越小.在一定范围内增大流道宽度,电池阴极扩散层和催化剂层内氧气浓度越小,水分浓度越大.结论在一定范围内降低流道的深度和增大流道的宽度有利于氧气的传输与充分反应,可以提高高温质子交换膜燃料电池的性能.研究结果对高温质子交换膜燃料电池的流场结构参数的优化具有重要参考价值. Catalyst layer and diffusion layer are important components of high temperature proton exchange membrane fuel cell,and the mass transfer has an important influence on the performance of the cell. A two-dimensional,single phase,the steady state mathematical model was established in this paper to simulate cathode oxygen and water vapor distribution in high temperature proton exchange membrane fuel cell,analysis effects of flowchannel depth and width on cathode oxygen,water vapor concentration. The simulation results showed that the performance of high temperature proton exchange membrane fuel cell were improved by reducing the channel depth and increasing the flowchannel width in a certain range to accelerate the transport of oxygen and full reaction.The research results have important reference value for the optimization of the structure parametersof the high temperature proton exchange membrane fuel cell.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2016年第2期315-321,共7页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然科学基金项目(51176131 51476107)
关键词 质子交换膜 燃料电池 数学模型 流道 PEM fuel cell mathematical model flowfield
  • 相关文献

参考文献4

二级参考文献74

  • 1余碧涛,李福燊,仇卫华.锂电池离子液体电解质的研究进展[J].化工进展,2004,23(11):1195-1198. 被引量:7
  • 2李茂春,张连洪,万淑敏,王树新,胡仕新.质子交换膜燃料电池阳极流场数值模拟及流场板沟槽尺寸优化[J].天津理工大学学报,2005,21(1):46-49. 被引量:2
  • 3王红星,王宇新.氢氧质子交换膜燃料电池阴极流道设计模型[J].化工学报,2006,57(1):97-103. 被引量:5
  • 4衣宝廉.燃料电池-原理.技术.应用[M].北京:化学工艺出版社,2003.160-162.
  • 5MANN R F, AMPHLETT J C, HOOPER, et al. Development and application of a generalized steady-state electrochemical model for a PEM fuel cell[J]. Journal of Power Sources, 2000, 86:173-180.
  • 6ROWE, LI X. Mathematical model of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2001, 102: 82-96.
  • 7ADAM Z W, NEWMAN J. Transport in polymer-electrolyte membranes,Ⅱ. Mathematical model [J]. Journal of the Electrochemical Society, 2004, 151(2): A 311-A 325.
  • 8ADAM Z W, NEWMAN J. Transport in polymer-electrolyte membranes, Ⅲ. Model validation in a simple fuel-cell model[J]. Journal of the Electrochemical Society, 2004, 151 (2): A 326-A 339.
  • 9KUMAR A,REDDY R G. Modelling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of bipolar/end plates[J]. Journal of Power Sources, 2003,114 ( 1 ) : 54-62.
  • 10NATARAJAN D,NGUYEN T V.A two-dimensional,two-phase, multicomponent,transient model for the cathode of a proton exchange fuel cell using conventional gas distributors[J].J Electrochem Soc, 2001, 148:A 1324-A 1335.

共引文献12

同被引文献60

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部