期刊文献+

网络熵在计算机防攻击中的安全化实践应用 被引量:2

Security practice application of network entropy in computer anti-attack
下载PDF
导出
摘要 分析了网络熵在计算机防护攻击中的应用。在网络安全指标选取基础要求的前提下,分析基于网络熵效果评估,量化指标,得到安全性度量,构建定量评估模型,系统设置子模块包括基本参数、攻击目的以及服务类型。采用灰色关联度表示评价指标,利用Libpcap库函数进行数据采集,设计系统实现框架图。搭建安全评估系统,发动模拟攻击,验证效果评估模型有效性,计算机防护攻击评估模型能够反应网络攻击效果。计算机防护攻击模型能够定量评估网络攻击效果,可操作性强。 The application of network entropy in computer anti-attack is analyzed. On the premise of the basic requirement of network security indicator selection,the effect evaluation based on network entropy and quantitative index are analyzed to obtain the security metric. The quantitative evaluation model was constructed,in which the submodule of system setup is composed of basic parameters,attack purpose and service types. The framework diagram of the design system was implemented by taking gray correlation degree to express the evaluation index and using Libpcap library function to acquire the data. The security assessment system was built,and a simulation attack was launched to verify the validity of the effect evaluation model. The computer anti- attack evaluation model can react and quantitatively evaluate the network attack effect. The model has strong operability.
出处 《现代电子技术》 北大核心 2016年第8期48-50,共3页 Modern Electronics Technique
基金 2014年河南省科技厅项目:基于免疫原理的大规模网络入侵检测和预警模型(90204011)
关键词 计算机防攻击 安全性 网络熵 效果评估 computer anti-attack security network entropy effect evaluation
  • 相关文献

参考文献6

二级参考文献72

  • 1张义荣,鲜明,王国玉.一种基于网络熵的计算机网络攻击效果定量评估方法[J].通信学报,2004,25(11):158-165. 被引量:55
  • 2赖积保,王慧强,金爽.基于Netflow的网络安全态势感知系统研究[J].计算机应用研究,2007,24(8):167-169. 被引量:21
  • 3LAU F, RUBIN S H, SMITH M H, et al. Distributed denial of service attacks [C]// 2000 IEEE International Conference on Systems, Man, and Cybernetics. Nashville, TN: IEEE, 2000,3 : 2275-2280.
  • 4TAMARU A, GILHAM F, JAGANNATHAN R, et al. A real- time intrusion detection expert system (IDES) [R]. CA: Com- puter Science Laboratory, 1992.
  • 5KUMAR S, SPAFFORD E H. A software architecture to sup- port misuse intrusion detection [C]// Proceedings of the 18th National Information Security Conference. [S.1.]: NISC, 1995: 194-204.
  • 6CANNADY J. Artificial neural networks for misuse detection [C]// Proceedings of the 1998 National Information Systems Se- curity Conference. [S.1.]: NISSC, 1998: 443-456.
  • 7LAKHINA A, CROVELLA M, DIOT C. Mining anomalies using traffic feature distributions [C]// Proceedings of ACM SIGCOMM 2005. Philadelphia, Pennsylvania, USA: ACM, 2005: 111-121.
  • 8CHEN W, YEUNG D Y. Defending against TCP SYN flooding attacks under different types of IP spoofing [C]// Proceedings of International Conference on Mobile Communications and Learn- ing Technologies. [S.1.]: ICMCLT, 2006: 38-48.
  • 9SHIN Scung-won, KIM Ki-young, JANG Jong-soo. D-SAT: de- tecting SYN flooding attack by two-stage statistical approach [C]// Proceedings of the 2005 Symposium on Applications and the Internet. [S.1.]: SAINT, 2005: 430-436.
  • 10JIN S, YEUNG D. A covariance analysis model for DDoS at- tack detection[C]// Proceedings of the Int'l Conf. on Communi- cations. [S.1.]: IEEE, 2004: 1882-1886.

共引文献54

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部