期刊文献+

随机参数变化对可靠指标求解的影响

Study of the influence of random parameters on the reliability index solving
下载PDF
导出
摘要 考虑材料弹性模量和外荷载的随机性,基于摄动随机有限元法建立了结构构件可靠度分析方法,并根据迭代点的不同分为基于验算点的迭代算法和基于均值点的迭代算法。通过算例将2种计算方法与基于蒙特卡洛法的可靠度算法进行了比较。结果表明:弹性模量随机情况下,基于验算点的迭代算法计算结果精度高于基于均值点的迭代算法,并且在随机参数小变异情况下具有良好的计算精度,误差均不超过5%;荷载随机情况下,不同变异系数下2种方法的计算精度都比较好,误差均不超过1%;弹性模量和荷载都随机情况下,在随机参数小变异的情况下2种方法的计算精度都较好,误差均不小于4%。同时考虑计算效率的影响,弹性模量随机情况下建议选用基于验算点的迭代算法,荷载随机情况下2种方法都可以选用,弹性模量和荷载都随机情况下建议选用基于均值点的迭代算法。 Considering the randomness of elastic modulus and external load,reliability analysis method was developed based on the perturbation stochastic finite element method.According to different iteration points,this method can be classified into two types:the iterative algorithm based on checking point and iterative algorithm based on average point.These two methods were compared with the reliability analysis method based on the monte carlo simulation method.Case study has demonstrated that the calculation accuracy of the first type method is higher than the second one in case of random elastic modulus,which also has good calculation accuracy when the random parameters varied little with,the calculation error less than 5%.When the load is random,the calculation accuracy of the two methods are both favourable under different variation coefficients with the error of both methods less than 1%.When the two parameters are stochastic with little variation,the calculation accuracy of both methods are both good with the error of both methods less than 4%.After analysing the calculation time,the iterative algorithm based on checking point was recommended in the case of random elastic modulus.Both calculation methods can be selected when the load is random.The iterative algorithm based on average point was recommended under the condition of two stochastic parameters.
出处 《中国科技论文》 CAS 北大核心 2016年第1期87-91,共5页 China Sciencepaper
基金 国家自然科学基金资助项目(51409051) 广西防灾减灾与工程安全重点实验室开放课题基金资助项目(2014ZDK0012) 桂林理工大学博士科研启动基金资助项目(002401003442)
关键词 结构工程 随机参数 随机有限元法 优化迭代算法 可靠指标 structural engineering random parameter stochastic finite element method optimized iterative algorithm reliability index
  • 相关文献

参考文献6

二级参考文献46

  • 1马洪波,陈建军,马芳,张建国.遗传算法在随机参数刚架结构概率优化设计中的应用[J].计算力学学报,2004,21(4):487-492. 被引量:1
  • 2肖新标,沈火明.移动荷载作用下桥梁的系统仿真[J].振动与冲击,2005,24(1):121-123. 被引量:26
  • 3孙正华,李兆霞.润扬斜拉桥有限元模拟及模态分析[J].地震工程与工程振动,2006,26(2):25-32. 被引量:14
  • 4Box G E P, Wilson K B. On the experimental attainment of optimum conditions [ J ]. Journal of the Royal Statistical Society,Series B: Methodological, 1951, 13(1): 1-45.
  • 5Wong F S. Slope reliability and response surface method [ J ]. Journal of Geotechnical Engineering, 1985, 111 (1) : 32-53.
  • 6Gayton N, Bourinet J M, Lemaire M. CQ2RS: a new statistical approach to the response surface method for reliability analysis [ J ]. Structural Safety, 2003, 25 ( 1 ) : 99-121.
  • 7Tanaka T, Yamasaki A, Koyamada K, et al. Interactive hierarchical RSM applied to parameter optimization of photonic crystal nanocavities [ C ]//Proceedings of the 13th IEEE International Symposium on Consumer Electronics. Kyoto, 2009:718-722.
  • 8Sato H, Tsuneno K, Aoyama K, et al. A new hierarchical RSM for TCAD-based device design to predict CMOS development [ C]//Proceedings of the 1995 International Conference on Microelectronic Test Structures. Nara, 1995 : 299-302.
  • 9Gavin H P, Yau S C. High-order limit state functions in the response surface method for structural reliability analysis[J]. Structural Safety, 2008, 30(2) : 162-179.
  • 10Isukapalli S S, Roy A, Georgopoulos P G. Stochastic response surface methods ( SRSMs ) for uncertainty propagation: application to environmental and biological systems[J]. Risk Analysis, 1998, 18(3) : 351-363.

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部