期刊文献+

Simulation of Far-Field Properties of Coherent Vertical Cavity Surface Emitting Laser Array

Simulation of Far-Field Properties of Coherent Vertical Cavity Surface Emitting Laser Array
原文传递
导出
摘要 Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays. Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期40-43,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026 and 61204011 the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No PXM2014-014204-07-000018
  • 相关文献

参考文献13

  • 1Du W M, Cao W Y and He Y F 2013 Chin. Phys. B 22 076803.
  • 2Cui H Y, Huang M and Ma M L 2013 Chin. Phys. B 22124203.
  • 3Martinsson H, Vukusic J A, Grabherr M, Michalzik R, Jager R, Ebeling K J and Larsson A 1999 IEEE Photon. Technol. Lett. 11 1536.
  • 4Botez D, Mawst L, Hayashida P, Peterson G and Roth T J 1988 Appl. Phys. Lett. 53 464.
  • 5Yoo H J 1990 Appl. Phys. Lett. 56 1198.
  • 6Gourley P L, Warren M E, Hadley G R, Vawter G A, Bren- nan T M and Hammons B E 1991 Appl. Phys. Lett. 58 890.
  • 7Zhou D and Mawst L J 2000 Appl. Phys. Lett. 77 2307.
  • 8Lehman A C and Choquette K D 2007 IEEE Photon. Tech- nol. Lett. 19 1421.
  • 9Xun M, Xu C, Xie Y Y, Zhu Y X, Mao M M, Xu K, Wang J, Liu J and Chen H D 2014 Electron. Lett. 50 1085.
  • 10Xun M, Xu C, Deng J, Xie Y Y, Jiang G Q, Wang J, Xu K and Chen H D 2015 Opt. Lett. 40 2349.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部