期刊文献+

基于直流系统的故障电弧检测技术的研究 被引量:1

下载PDF
导出
摘要 电弧故障是电力系统中常见的故障类型,严重威胁电力系统的安全稳定运行,且容易引发大型火灾等灾难性事故。其中直流故障电弧由于不同于交流电弧,没有过零等特征,很难被传统的保护方法检测出来。为促进直流故障电弧检测技术的发展,阐述了直流故障电弧产生的原因、分类,搭建直流电弧试验平台以验证其特性,对当前故障电弧检测的研究内容和取得的成果进行分析,重点讨论了基于电流、电压时频特性的检测原理和技术方法,最后对直流故障电弧检测技术的研究方向进行了阐述。
出处 《科技创新与应用》 2016年第12期185-186,共2页 Technology Innovation and Application
  • 相关文献

参考文献6

  • 1吴春华,闫俊驰,李智华.光伏系统故障电弧检测技术综述[J].电源技术,2014,38(9):1768-1770. 被引量:17
  • 2Jincheng Li,Jeffery L.Kohler.New Insight into the Detection of HighImpedance Arcing Faults on DC Trolley Systems[J].IEEE Transactions on industry applications,1999,35(5):1169-1173.
  • 3R.Spyker,D.L.Schweickart,J.C.Horwath,et al.An Evaluation of Diagnostic Techniques Relevant to Arcing Fault Current Interrupters for Direct Current Power Systems in Future Aircraft[J].IEEE,Electrical Insulation Conference and Electrical Manufacturing Expo,2005.Procedings,USA,IEEE,2005:146-150.
  • 4T.S.Sidhu,M.S.Sachdev,G.S.Sagoo.Detection and location of low-level arcing faults inmetal-clad electrical apparatus[J].IEEE,The 7th International Conference on Developments in Power System Protection,Netherlands,IEEE,2001:157-160.
  • 5蔡彬,陈德桂,吴锐,王鑫伟,高冬梅,陈卫国.开关柜内部故障电弧的在线检测和保护装置[J].电工技术学报,2005,20(10):83-87. 被引量:79
  • 6James A.Momoh,Kumar,D.M.V,et al.,Lab VIEW based Implementation Action for DCArcing of Remedial Faults in a Spacecraft[J].IEEE,Power Engineering Society General Meeting(Vol 1),USA,IEEE,2003:91-498.

二级参考文献18

  • 1李兴文,陈德桂.空气开关电弧的数学模型及其特性的研究综述[J].高压电器,2007,43(4):269-273. 被引量:18
  • 2Klaus D W, Balnaves D . Internal faults in distribution switchgear - where are we now and where are we going. Trends in Distribution Switchgear, Conference Publication No. 459 IEE 1998: 68~72.
  • 3Sidhu T S, Singh G, Sachdev M S. Protection of power system apparatus against arcing faults. 1998 IEEE Region 10th International Conference on Global Connectivity in Energy, Computer, Communication and Control, 1998: 436~439.
  • 4Sidhu T S, Sachdev M S, Sagoo G S. Detection and location of low-level arcing faults in metal-clad electrical apparatus. Developments in Power System Protection, Conference Publication No. 479 IEE, 2001: 157~160.
  • 5Sidhu T S, Sagoo G S, Sachdev M S. Multi-sensor secondary device for detection of low-level arcing faults in metal-clad MCC switchgear panel. IEEE Transactions on Power Delivery, 2002, 17(1): 129~134.
  • 6Nakano S, Tsubaki T, Hironaka S. Applying a voice recognition system for SF6 gas insulated switchgear's inspection/maintenance services. IEEE Transactions on Power Delivery, 2001, 16(4): 534~538.
  • 7Sidhu T S, Sagoo G S, Sachdev M S. On-line detection of low-level arcing faults in metal-clad electrical apparatus. Electrical and Computer Engineering, 2000 Canadian Conference, 2000: 730~734.
  • 8Bartlett E J , Vaughan M, Moore P J . Investigation into electromagnetic emissions from power system arcs. EMC York 99, Conference Publication No. 464, IEE, 1999: 47~52.
  • 9Land H B , Eddins C L, Gauthier L R, et al. Design of a sensor to predict arcing faults in nuclear switchgear. IEEE Transactions on Nuclear Science, 2003, 50(4): 1161~1165 .
  • 10Kalkstein E W, Doughty R L, Paullin A E, et al. Safety benefits of arc-resistant metalclad medium-voltage dwitchgear. IEEE Translations on Industry Application, 1995, 31(6): 1402~1410.

共引文献92

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部