期刊文献+

图像自适应分块的压缩感知采样算法 被引量:5

Image compression sampling based on adaptive block compressed sensing
原文传递
导出
摘要 目的在图像压缩感知过程中,不管是整体采样还是固定分块采样,都不能充分利用图像的稀疏性,存在采样率与图像重构质量的矛盾。提出了一种基于图像纹理变化的自适应分块感知采样算法ABCS(adaptive block compressed sensing),再结合JPEG量化思想,在不降低图像重构质量的前提下降低采样率,更大地提高压缩比。方法首先进行图像预分块,计算分析各块纹理复杂度,当图像块纹理复杂度低于相应阈值,选择最佳采样率对各块观测采样,当图像块纹理复杂度高于相应阈值,需再分块,重复上述步骤,达到最小16×16块时停止分块。当最小块的纹理复杂度高于最大阈值采用JPEG量化编码,其他块选择匹配的采样率,以压缩感知方式压缩。结果 ABCS算法与典型的压缩感知重构算法结合并与其原始算法比较,在相近采样率条件下,图像重构质量提高明显,尤其在低采样率下性能更佳,如20%采样率下重构图像PSNR值达到30 d B左右。结论提出的自适应的分块采样充分利用图像的稀疏分布,提高压缩感知的效率;高复杂纹理块采用JPEG编码处理,避免了重构质量差的缺点,同时减少了重构时间。 Objective Image sparsity cannot be fully exploited through either whole or fixed block sampling during image compressive sensing (CS). An insurmountable discrepancy is observed between sampling rate and image reconstruction quality. This study proposes an adaptive block compressive sensing (ABCS) algorithm based on the changes of image tex- ture. The algorithm combines JPEG quantization methods and reduces the sampling rate to increase the compression ratio without reducing the quality of the premise of image reconstruction. Method The proposed ABCS algorithm requires that the image be roughly divided into blocks for starters. Then, the texture complexity of each block is calculated and analyzed to select the optimal sampling rate in the CS process. Whether a block should be further divided depends on whether its tex- ture complexity is higher or lower than the corresponding threshold. When the texture complexity is lower than the corre- sponding threshold, the optimal sampling rate should be selected to apply compressive sampling. When the texture com- plexity is higher than the corresponding threshold, the block should be further divided into even smaller blocks. The processis repeated until the block size is 16 x 16. After the division, if the texture complexity is still higher than the maximum corresponding threshold, then JPEG quantization coding should be applied. Result The new compression algorithms are generated by combining the ABCS and typical CS reconstruction algorithms. Experiments were conducted to compare the new algorithms and the original algorithms. Under the condition of similar sampling rate, the quality of the reconstructed image is evidently improved, particularly at a low sampling rate. For example, the peak signal-to-noise ratio of the recon- structed image is approximately 30 dB at 20% sampling rate. Conclusion Simulation results show that adaptive block sam- piing makes full use of the sparsity of the image and improves the efficiency of compressed sensing. The blocks using JPEG encoding avoid poor-quality reconstruction of the complex texture area and reduce the reconstruction time.
机构地区 重庆通信学院
出处 《中国图象图形学报》 CSCD 北大核心 2016年第4期416-424,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(61272043) 重庆市重点基金项目(cstc2013jjB40009)~~
关键词 图像压缩 压缩感知 采样率 稀疏表示 image compression compressive sensing sampling rate sparse representation
  • 相关文献

参考文献6

二级参考文献170

  • 1杜振洲,周付根.基于帧间去相关的超光谱图像压缩方法[J].红外与激光工程,2004,33(6):642-645. 被引量:8
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3Donoho D L. Compressed sensing[J]. IEEE Transaction on Information Theory ,2006,52(4) : 1289 - 1306.
  • 4Baraniuk R G. Compressive sensing [ J]. 1EEE Signal Pro- cessing Magazine,2007,24(4) : 118 - 120.
  • 5Eldar Y C, et al. Compressed Sensing: Theory and Applicati- olns[M]. New York: Cambridge University Press, 2012.1 - 544.
  • 6Cand~s E J. The restricted isomelry property and its implica- tions for compressed sensing[J]. Comptes Rendus Mathema- tique, 2008,346 (9) : 589 - 592.
  • 7Chen S S, et al. Atomic decomposition by basis pursuit[J]. Society for Industrial and Applied Mathematics Review,2001,43(1):129 - 159.
  • 8Ji S, et al. Bayesian compressive sensing and projection opti- mization[ A ]. Proceedings of the 24th International Confer- ence Machine Learning[ C]. Corvallis, OR - USA, 21XY/. 377 - 384.
  • 9He L, Carin L. Exploiting structure in wavelet-based Bayesian compressive sensing [ J ]. IE.EE Transaction on Signal Processing, 2009,57 (9) : 3488 - 3497.
  • 10Figueiredo M A T, et al. Gradient projection for sparse re- construction: application to compressed sensing and other in- verse problems[ J]. IEEE Journal on Selected Areas in Com- munications, 2027,1 (4) : 586 - 597.

共引文献439

同被引文献50

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部