期刊文献+

基于BP神经网络的产品生命周期评价敏感性分析 被引量:16

Sensitivity analysis for life cycle assessment of product based on back propagation neural network
下载PDF
导出
摘要 为支持产品方案设计阶段设计信息反馈指导方案优化,提出基于BP神经网络的设计方案敏感性分析方法。建立了绿色信息模型,从方案设计中提取与环境影响相关的绿色信息;建立了神经网络敏感性分析模型,将各个生命周期阶段的绿色信息作为敏感性分析的输入参数,将对应的生命周期评价结果作为输出参数;训练BP神经网络模型使相对误差达到预期精度;分别提取该BP网络输入层与隐含层、隐含层与输出层各单元之间的连接权值,使用Tchaban算法计算得到绿色信息对生命周期评价结果的敏感性系数,即影响贡献值。以牵引电机为例,验证了所提敏感性分析方法,确定了主要设计变量对评价结果的影响趋势,从而对设计方案的变更提出了改进方向。 To give feedback directing to scheme optimization in conceptual design stage by using design information,a sensitivity analysis method based on Back Propagation(BP)neural network was proposed.Green features model was established to extract green information which was related to environmental impact.The sensitivity analysis model of BP neural network was established by taking the green information of each life cycle period as input parameters while the results of its life cycle assessment as output parameters respectively.The BP neural network was trained to reach desired accuracy with the researched data.Tchaban theory was used to calculate the sensitive coefficient between green information and life cycle assessment results using link weights exacted from the input layer to the hide layer and the hide layer to the output layer of BP neural network.A traction motor was taken as an example to verify the proposed method,and the impact trend of design variables on evaluation result was determined to provide guidance for design scheme modification.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2016年第3期666-671,共6页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(51175312) 国家863计划资助项目(2014AA041503)~~
关键词 生命周期评价 绿色特征 BP神经网络 敏感性分析 方案设计 life cycle assessment green features BP neural network sensitivity analysis conceptual design
  • 相关文献

参考文献17

  • 1YANG C, ADAMS D E. A damage identification technique based on embedded sensitivity analysis and optimization processes[J]. Journal of Sound and Vibration,2014,333(14): 3109-3119.
  • 2ZHANG Y, AHMED O S, BAKR M H. Wideband FDTD- based adjoint sensitivity analysis of dispersive electromagnetic structures[J]. IEEE Transactions on Microwave Theory and Techniques,2014,62 (5) :1122-1134.
  • 3CHOWDHURY M S, CHONGMIN S, WEI G. Shape sensi- tivity analysis of stress intensity factors by the scaled boundary finite element method[J]. Engineering Fracture Mechanics, 2014,116(1) : 13-30.
  • 4MALIK M H, ARIF A F M, KHAN Z, et al. Impact resist- ance of composite laminate flat plates--a parametric sensitivity analysis approach[J]. Composite Structures, 2013, 102: 138- 147. DOI:10. 1016/j. competruet. 2013.02. 030.
  • 5LI P, GUO T, LIU Z. Finite element analysis of parameters sensitivity analysis of landslide stability[J]. Applied Mechan- ics and Materials, 2012,170/173 : 903-906.
  • 6KALA Z, KALA J. Sensitivity analysis of stability problems of steel structures using shell finite elements and nonlinear computation methods[EB/OL]. [2014-11-13]. http://www. wseas, us/e-library/transactions/mechanics/2009/29-593, pdf.
  • 7HUTCHESON R S, MCADAMS D A. Sensitivity measures for use during conceptual design[J]. International Journal of Design Engineering, 2012,5 (1) : 1-20.
  • 8SIVAKUMAR K, BALAMURUGAN C, RAMABALAN S. Evolutionary sensitivity-based conceptual design and tolerance allocation for mechanical assemblies[J]. International Journal of Advanced Manufacturing Technology, 2010,48 (1/2/3/4) : 307-324.
  • 9蒋艳,岳超源.方案排序对属性值的敏感性分析[J].武汉理工大学学报,2003,25(5):86-89. 被引量:7
  • 10马显春,王雷,赵法锁.滑坡稳定影响因子敏感性分析及治理方案探讨[J].地质力学学报,2008,14(4):381-388. 被引量:25

二级参考文献39

  • 1赵温波,杨鹭怡,王立明.径向基概率神经网络的混合结构优化算法[J].系统仿真学报,2004,16(10):2175-2180. 被引量:14
  • 2赵温波,王立明,黄德双.最大绝对误差结合微遗传算法优化径向基概率神经网络[J].计算机研究与发展,2005,42(2):179-187. 被引量:3
  • 3陈小明,洪军,阎海红,卢秉恒.基于Elman神经网络的振镜扫描系统误差校正技术研究[J].西安交通大学学报,2006,40(5):587-590. 被引量:13
  • 4陈珽.决策分析[M].北京:科学出版社,1987..
  • 5蒋艳.多属性决策中参数敏感性研究及应用[M].武汉:华中科技大学,2002..
  • 6钱加欢 殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996..
  • 7Shubh Pathak Bjom Nilsen. Probabilistic rock slope stability analysis for Himalayan condition [ J ]. Bulletin of Engineering Geology and the Environment, 2004, 63 : 25 - 32.
  • 8PAYA B A, ESAT I I. Artificial in neural network based fault diagnostics of rotating machinery using wavelet transforms as preprocessor[J]. Mechanical Systems and Signal Processing, 1997,11(5) :751-765.
  • 9LI Y W, WEI G Z, YING L. Rolling bearing fault diagnosis based on wavelet packet neural network characteristic entropy [J].Advanced Materials Research, 2010,108 (1) : 1075-1079.
  • 10WONG W K,YUEN C W M,FAN D D. Stitching defect detection and classification using wavelet transform and BP neural network[J]. Expert Systems with Applications, 2009,36( 2): 3845 -3856.

共引文献89

同被引文献197

引证文献16

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部