期刊文献+

基于稀疏特征迁移的语音情感识别 被引量:3

Speech Emotion Recognition Using Sparse Feature Transfer
下载PDF
导出
摘要 为了解决语音情感识别系统中训练数据和测试数据来自不同数据库所引起的识别率降低的问题,提出了一种基于稀疏特征迁移的语音情感识别方法。通过引入稀疏编码获取情感特征在不同数据库条件下的共同稀疏表示;同时引入最大区分差异(Maximum mean discrepancy,MMD)来衡量不同数据库条件下稀疏表示分布之间的距离,并将其作为稀疏编码目标函数的约束条件,从而获得较为鲁棒的稀疏特征。实验结果表明,相比传统语音情感识别方法,基于稀疏特征迁移的语音情感识别方法显著提高了跨库条件下的情感识别率。 In speech emotion recognition system ,recognition rates will drop drastically when the training and the testing utterances are from different corpora .To solve this problem ,a novel sparse feature trans‐fer approach is proposed .By employing sparse coding algorithm ,the common sparse feature representa‐tion of emotion features from different corpora is obtained .Meanwhile ,the maximum mean discrepancy (MMD) algorithm is introduced to measure the distance between different distributions ,and is used as the regularization term for the objective function of sparse coding .Finally ,the robust sparse features are achieved for recognition .Experimental results show that ,compared to traditional methods ,the proposed approach can significantly improve the recognition rates for cross databases .
出处 《数据采集与处理》 CSCD 北大核心 2016年第2期325-330,共6页 Journal of Data Acquisition and Processing
基金 山东省自然科学基金(ZR2014FQ016 ZR2015PF010)资助项目 国家自然科学基金(61273266 61403328 61403329)资助项目 东南大学基本科研业务费(CDLS-2015-04)资助项目
关键词 语音情感识别 特征迁移 稀疏编码 speech emotion recognition feature transfer sparse coding
  • 相关文献

参考文献18

  • 1Ayadi E1 M, Kamel M S, Karray F. Survey on speech emotion recognition: Features, classification schemes, and databases [J]. Pattern Recognition, 2011, 44(3) 572-587.
  • 2赵力,黄程韦.实用语音情感识别中的若干关键技术[J].数据采集与处理,2014,29(2):157-170. 被引量:35
  • 3Stuhlsatz A, Meyer C, Eyben F, et al. Deep neural networks for acoustic emotion recognition: Raising the benchmarks[C] //Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP). Dallas, USA IEEE Sig- nal Processing Society, 2011: 5688-5691.
  • 4余华,黄程韦,金赟,赵力.基于粒子群优化神经网络的语音情感识别[J].数据采集与处理,2011,26(1):57-62. 被引量:20
  • 5Zhang Z, Weninger F, Wollmer M, et al. Unsupervised learning in cross-corpus acoustic emotion recognition[C]//Proceed ings of IEEE Workshop on Automatic Speech Recognition and Understaading (ASRU). Hawaii, USA: IEEE Signal Process- ing Society, 2011: 523-528.
  • 6J eon J H, Le D, Xia R, et ai. A preliminary study of cross-lingual emotion recognition from speech: Automatic classification versus human perception[C]//Proceedings of Interspeeeh. Lyon, France ISCA, 2013 : 2837 2840.
  • 7Deng J, Zhang Z, Eyben F, et al. Autoencoder-based unsupervised domain adaptation for speech emotion recognition[J]. IEEE Signal Processing Letters, 2014, 21(9): 1068-1072.
  • 8Song P, Jin Y, Zhao L, et al. Speech emotion recognition using transfer learning[J]. IEICE Transactions on Information and Systems, 2014, 97(9): 2530-2532.
  • 9Huang K, Aviyente S. Sparse representation for signal classification[C]//Proceedings of Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2006: 609-616.
  • 10Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10) : 1345- 1359.

二级参考文献71

  • 1赵力,王治平,卢韦,邹采荣,吴镇扬.全局和时序结构特征并用的语音信号情感特征识别方法[J].自动化学报,2004,30(3):423-429. 被引量:15
  • 2王治平,赵力,邹采荣.基于基音参数规整及统计分布模型距离的语音情感识别[J].声学学报,2006,31(1):28-34. 被引量:26
  • 3Heard R W.Affective computing[M].Cambridge:MIT Press,1997.
  • 4Heard R W.Toward computers that recognize and respond to user emotion[J].IBM Technical Journal,2000,38(2):705-719.
  • 5Qiang Guo,Zhang Peter.Neural networks for classification:a survey[J].IEEE Transaction on Systern,Man,and Cybernetics Application and Reviews,2000,30(4):451-462.
  • 6Yamada T,Hashimoto H,Tosa N,Pattern recognition of emotion with neural network[C] //Proceeding of the 1995 IEEE IECON 21st International Conference on Industrial Electronics.Control,and Instrumentation.[S.l.] :IEEE,1995,1:183-187.
  • 7Sato H,Mitsukura Y,Fukumi M,et al.Emotional speech classification with prosodic parameters by using neural networks[C] //Seventh Australian and NewZealand Intelligent Information Systems Conference.New Zealand:[s.n.] ,2001:395-398.
  • 8Nicholson J,Takahashi K,Nakatsu R.Emotion recognition in speech using neural networks[C] //Proceedings ICONIP 99,6 th International Conference on Neural Information Processing,1999(2):16-20.
  • 9日本文部省.情感信息处理的信息学、心理学研究.[R].1999.
  • 10Shi Y,Eberhart R C.A modified swarm optimizer[C] //IEEE International Conference on Evolutionary Computation.Anchorage,AK,USA:IEEE,1998:69-73.

共引文献51

同被引文献25

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部