期刊文献+

引入判别准则的主动轮廓分割模型

The Active Contour Segmentation Model with Criterion Introduced
下载PDF
导出
摘要 基于区域信息的主动轮廓模型应用在图像分割中,难以使初始轮廓线的鲁棒性和分割强度异质图像的能力实现有效统一。针对这一缺陷,根据Fisher判别准则,在基于全局区域信息和局部区域信息的主动轮廓模型的基础上,对局部区域信息项进行了变换以及引入了判别准则,得到了一种改进的基于区域信息的主动轮廓模型。改进的模型不仅增强了初始位置的鲁棒性,而且可以有效处理强度异质图像,通过实验检验了该模型的性能。 In image segmentation, active contour model based on regional information application is difficult to make the robustness of initial contour line and the ability of segmenting heterogeneous image segmentation unified effectively. In view of these disadvantages, according to the principle of Fisher discriminant criterion, this paper gets an improved active contour model based on regional information, which is on the basis of active contour model with the global regional information and local regional information, by transforming local regional information item and introducing the discrimination criterion information. The improved model not only enhances the initial position of robustness, but also can effectively deal with intensity heterogeneous image. The property of this model is verified by experiments.
出处 《红外技术》 CSCD 北大核心 2016年第4期325-332,共8页 Infrared Technology
基金 广西高校科研项目(KY2015ZD127) 湖南文理学院博士科研启动基金项目 广西高校科学技术研究项目重点项目(ZD2014129)
关键词 主动轮廓模型 图像分割 判别准则 active contour model image segmentation discrimination criterion
  • 相关文献

参考文献12

  • 1纪利娥,杨风暴,王志社,陈磊.基于边缘图像和SURF特征的可见光与红外图像的匹配算法[J].红外技术,2012,34(11):629-635. 被引量:17
  • 2WANG X F,MIN H,ZOU L,et al.A novel level set method for image segmentation by incorporating local statistical analysis and global similarity measurement[J].Pattern Recognition,2015,48(1):189-204.
  • 3Kass A W M,Terzopoulos D.Snakes:active contour models[J].International Journal of Computer Vision,1987(4):321-331.
  • 4Chan T,Vese L.Active contours without edges[J].IEEE Transaction on Image Processing,2001,10(2):266-277.
  • 5Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J].International Journal of Computer Vision,1997,22:61-79.
  • 6Xu C,Prince J L.Snakes,shapes and gradient vector flow[J].IEEE Transactions on Imaging Processing,1998,7(3):359-369.
  • 7Vese L A,Chan T F.A multiphase level set framework for image segmentation using the Mumford and Shah model[J].International Journal of Computer Vision,2002,50(3):271-293.
  • 8Chunming L,Chiu-Yen K,Gore J C,et al.Implicit active contours driven by local binary fitting energy[C]//IEEE Conference on Computer Vision and Pattern Recognition,CVPR,2007:1-7.
  • 9Wang L,Li C,Sun Q,et al.Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J].Computerized Medical Imaging and Graphics,2009,33(7):520-531.
  • 10Yue X,Xie M,Li L.Improved LBF model combined with Fisher criterion[M]//Jin D,Lin S.Advances in Future Computer and Control Systems,Berlin Heidelberg:Springer,2012,1:1-5.

二级参考文献11

  • 1倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(9):1-6. 被引量:83
  • 2Peng Wang, Zhi-guo Qu, Ping Wang, et al. A Coarse-to-Fine Matching Algorithm for FLIR and Optical Satellite Image Registration[J]. leee Geoscienee And Remote Sensing Letters, 2012, 9(4): 599-603.
  • 3Barbara Zitova, Jan Flusser. Image registration methods: a survey[J]. Image and Vision Computing, 2003(21): 977-1000.
  • 4Yong Sun Kim, Jae Hak Lee, Jong Beom Ra. Multi-sensor image registration based on. intensity and edge orientation information[J]. Pattern Recognition, 2008(41): 3356-3365.
  • 5李冬梅,张惊雷.基于SURF算法的可见光与红外图像的匹配[J].仪器仪表学报,2011,32(6):268.270.
  • 6张怀利.异类传感器图像配准的若干关键技术研究[D].北京:北京理工大学.2008:32-39.
  • 7Herbert Bay, Andreas Ess, Tinne Tuytelaars, et al. Speeded-Up Robust Feature[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 8Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[J]. In 1EEE Conference on Computer Vision and Pattern Recognition, 2011.
  • 9MA Fischler, RC Bolles. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications oftheACM, 1981, 24(6): 381-395.
  • 10RI Hartley. In defense of the eight-point algorithm[J]. IEEE Transactions on pattern analysis and machine intelligence, 1997, 19(6): 580-593.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部