期刊文献+

腰椎放大细芯光纤传感器实现折射率/温度同时测量的研究 被引量:4

Thin-core single-mode fiber sensor for simultaneous measurement of refractive index and temperature based on waist-enlarged tapers
原文传递
导出
摘要 根据马赫-曾德尔干涉(MZI)原理,在两段标准单模光纤(SMF)中间腰椎放大熔接长为2cm的细芯SMF(TCSMF),构成光纤传感器。利用TCSMF的包层模、纤芯模对折射率和温度的灵敏度差异,通过检测透射光谱中不同级次的干涉谷的特征波长变化,结合敏感矩阵实现对折射率/温度的双参数同时测量。实验选取在1 502.54nm波长处干涉谷的折射率和温度的灵敏度分别为270.517 1nm/RIU(其中RIU为折射率单位)和19.3pm/℃;在1 521.64nm波长处干涉谷的折射率灵敏度为239.510 3nm/RIU,对温度不敏感。根据0.01nm波长分辨率的光谱仪(OSA),本文光纤传感器对折射率和温度的分辨率分别为3.6966×10-5 RIU和0.5181℃,也可以应用于其他参数的测量,具有良好的应用和发展前景。 A fiber sensor based on Mach-Zehnder interference(MZI)for simultaneously measuring refractive index and temperature is proposed in this paper.The fiber sensor is constructed by waist-enlarging a 2cm thin-core single-mode fiber between two conventional single-mode fibers.By observing the wavelength shifts of different interference dips and using the sensitivity matrix,refractive index and temperature can be measured simultaneously,since the core modes and the cladding modes have different sensitivities to these two external parameters.Experimental results indicate that refractive index and temperature sensitivities of the wavelength dips at 1502.54 nm are 270.5171nm/RIU and 19.3pm/℃,the refractive index sensitivity of the wavelength dip at 1521.64 nm is 239.5103nm/RIU and whereas the temperature is insensitive.The proposed fiber sensor can reach a resolution of 3.696 6×10-5 RIU for refractive index and 0.518 1℃for temperature.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第4期353-358,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61205029) 浙江省自然科学基金(LY15F050004)资助项目
关键词 光纤光学 光纤传感器 马赫-曾德尔干涉(MZI) 腰椎放大 折射率/温度测量 fiber optics fiber sensor Mach-Zehnder interferometer(MZI) waist-enlarged refractive index and temperature measurement
  • 相关文献

参考文献8

二级参考文献79

  • 1O. Frazao, P. Caldas, F. M. Araujo, L. A. Ferreira, and J. L. Santos, Opt. Lett. 32, 1974 (2007).
  • 2Y. Liu and L. Wei, Appl. Opt. 46, 2516 (2007).
  • 3F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, IEEE Photon. Technol. Lett. 21, 76 (2009).
  • 4T. Zhao, Y. Gong, Y. Rao, Y. Wu, Z. Ran, and H. Wu, Chin. Opt. Lett. 9, 050602 (2011).
  • 5C.-Y. Lin, L. A. Wang, and G.-W. Chern, J. Lightwave Technol. 19, 1159 (2001).
  • 6Y. Lin, J. A. R. Williams, and I. Bennion, IEEE Photon. Technol. Lett. 12, 531 (2000).
  • 7J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, Opt. Lett. 29, 346 (2004).
  • 8L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, Opt. Express 16, 11369 (2008).
  • 9B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, Opt Express 16, 19291 (2008).
  • 10H. Y. Choi, M. J. Kim, and B. H. Lee, Opt. Express 15, 5711 (2007).

共引文献76

同被引文献33

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部