期刊文献+

六韧带手性蜂窝结构的动力学响应特性研究 被引量:25

A study of the dynamic response characteristics of hexagonal chiral honeycombs
下载PDF
导出
摘要 利用显式动力有限元ANSYS/LS-DYNA数值研究了六韧带手性蜂窝结构的面内冲击动力学特性。在保证圆环节点半径不变的前提下,通过改变韧带长度和胞元厚度,首先建立了六韧带手性蜂窝的有限元模型,具体讨论了冲击速度和胞元微结构参数对手性蜂窝材料的面内宏/微观变形行为、密实应变、动态平台应力和比能量吸收能力的影响。研究结果表明,随着冲击速度的增加,六韧带手性蜂窝结构表现为3种宏观变形模态:"><"型模式、"过渡"模式和"I"型模式。在中、低速冲击载荷下,能够明显观察到拉胀材料在轴向压缩时独特的"颈缩"现象,其主要与韧带绕着圆环中心节点的旋转变形有关。通过引入无量纲"动态敏感因子",还研究了六韧带手性蜂窝材料的面内动态冲击强化效应。 The in-plane dynamic crushing behaviors of hexagonal chiral (hexachiral) honeycombs were numerically studied by explicit dynamic finite element (EDFE) simulations using ANSYS/LS-DYNA. Assuming that the circular radii are all the same, the FE models of hexachiral honeycombs were first established by the variation of ligament length and cell-wall thickness. The respective influences of the impact velocity and microcell structural parameters on the in-plane macro-/micro-deformation behaviors, densification strains, dynamic plateau stresses and specific energy absorption of chiral honeycombs were discussed. Numerical results show three different types of deformation modes for hexachiral honeycombs with increasing impact velocity: " 〉 〈 " mode, "transition" mode, and "I" mode. Under low or moderate velocity crushing, hexachiral honeycombs display a particular lateral compression "shrinkage" phenomenon of auxetic materials, which mainly depends on the rotation deformation of the ligament on the central node. By introducing a nondimensional "dynamic sensitivity index", the in-plane dynamic enhancement effect of hexachiral honeycombs was also investigated.
出处 《振动与冲击》 EI CSCD 北大核心 2016年第8期1-7,26,共8页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(11402089) 河北省自然科学基金资助项目(A2013502120) 中央高校基本科研业务费专项资金资助项目(2014MS117)
关键词 六韧带手性蜂窝 平台应力 变形模式 动态强化 负泊松比 hexachiral honeycomb plateau stress deformation modes dynamic enhancement negative Poisson'sratio (NPR)
  • 相关文献

参考文献17

  • 1Lu G X, Yu T X. Energy absorption of structures and materials[M]. Cambridge: CRC Press, Woodhead Publishing Limited, 2003.
  • 2Prawoto Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio[J]. Computational Materials Science, 2012, 58: 140–153.
  • 3Hou Y, Tai Y H, Lira C, et al. The bending and failure of sandwich structures with auxetic gradient cellular cores[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49: 119–131.
  • 4Zhang X C, An L Q, Ding H M, et al. Influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson’s ratio[J]. Journal of Sandwich Structures and Materials, 2015, 17(1): 26–55
  • 5Prall D, Lakes R S. Properties of a chiral honeycomb with a Poisson’s ratio of -1[J]. International Journal of Mechanical and Science, 1996, 39(3): 305–314.
  • 6Alderson A, Alderson K L, Attard D, et al. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2010, 70(7): 1042–1048.
  • 7Lorato A, Innocenti P, Scarpa F, et al. The transverse elastic properties of chiral honeycombs[J]. Composites Science and Technology, 2010, 70(7): 1057–1063.
  • 8Scarpa F, Blain S, Lew T, et al. Elastic buckling of hexagonal chiral cell honeycombs[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(2): 280–289.
  • 9Liu X N, Huang G L, Hu G K. Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(11): 1907–1921.
  • 10Haghpanah B, Papadopoulos J, Mousanezhad D, et al. Buckling of regular, chiral and hierarchical honeycombs under a general macroscopic stress state[J]. Proceedings of the Royal Society A, 2014, 470(2167): 20130856.

二级参考文献15

  • 1庄茁.ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009:287-350.
  • 2Tee K F, Spadoni A,Scarpa F, et al.. Vibroacoustics and wave propagation of novel chiral honeycombs [ C ]. Active and Passive Smart Structures and Integrated Systems, Proc. of SPIE Vol. 6928, 69280J, ( 2008 ) doi: 10. 1117/ 12.776075.
  • 3Ruzzene M. Structural and acoustic behavior of chiral truss- core beams [ J ]. Journal of Vibration and Acoustics, 2006, 128(5) :616 -626.
  • 4Dharmasena K P, Queheillalt D T, Wadley H N G, et al. Dynamic compression of metallic sandwich structures during planar impulsive loading in water [ J ]. European Journal of Mechanics A/Solids, 2010,29 ( 1 ) : 56 - 67.
  • 5Fleck N A, Deshpande V S. The resistance of clamped sandwich beams shock loading [ J ]. Transaction of ASME, 2004,71 ( 3 ) : 386 - 401.
  • 6Deshpande V S, Fleck N A. One-dimensional response of sandwich plates to underwater shock loading [ J ]. Journal of the Mechanics and Physics of Solids, 2005 ( 53 ) : 2347 - 2383.
  • 7Liang Y,Spuskanyuk A V, Floes S E, et al. The response of metallic sandwich panels to water blast [ J ]. Journal and Applied Mechanics,2007,74 ( 1 ) : 81 - 99.
  • 8Wei Z, Dharmasena K P, Wadley H N G, et al. Analysis and interpretation of a test for characterizing the response of sandwich panels to water blast [ J ]. International Journal of Impact Engineering,2007,34(10) : 1602 - 1618.
  • 9Haydn W, Kumar D, Chen Y C, et al. Compressive response of muhilayered pyramidal lattices during underwater shock loading [ J ]. International Journal of Impact Engineering, 2008,35(9) : 1102 - 1114.
  • 10Tilbrook M T, Deshpande V S, Fleck N A. Underwater blast loading of sandwich beams: Regimes of behaviour [ J ]. International Journal of Solids and Structures ,2009,46 ( 17 ) : 3209 - 3221.

共引文献10

同被引文献192

引证文献25

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部