期刊文献+

不锈钢基压电厚膜俘能器的制作与性能测试

The Fabrication and Performance Test of Energy Harvester Based on Stainless Steel Substrate and Piezoelectric Thick Film
下载PDF
导出
摘要 由于硅基底断裂韧性低及压电厚膜有利于提高俘能器输出功率,因此,该文提出在304不锈钢基底上制备PZT压电厚膜俘能器。304不锈钢薄片既作为基底又作为下电极,金属Pt/Ti结构作为上电极。不锈钢基底厚为30μm,采用电流体驱动雾化沉积制备5μm厚的压电材料,通过对压电材料XRD表征,得到了在(110)晶向择优取向的钙钛矿结构。设计了长20mm、宽5mm压电悬臂梁结构俘能器。实验表明,压电俘能器的谐振频率为81Hz,当加速度为0.69 g(g=9.8m/s2)时,输出开路电压峰-峰值为1.3V;负载电阻为260kΩ时,输出功率最大(为0.758μW),对应的功率密度为3.19mW·cm-3·g-2。 As silicon substrate has low fracture toughness,piezoelectric thick film is benefit to improve power output of energy harvester,an energy harvester with 304 stainless steel substrate and PZT thick film was proposed in this paper.The 304 stainless steel sheet was used as the substrate and the bottom electrode,the metal Pt/Ti structure was used as the top electrode.The stainless steel substrate is 30μm in thickness,5μm-thick piezoelectric material was fabricated by electrohydrodynamic atomization deposition,and the excellent(110)crystal orientations perovskite structure was obtained by means of piezoelectric material′s XRD characterizing.The piezoelectric cantilever energy harvester with length of 20 mm and width of 5mm has been designed.The energy harvesting experiment showed the harvester could get 1.3Vopen circuit voltage peak-peak value under the 81 Hz resonance frequency and0.69 g(g=9.8m/s2)acceleration,the maximum output power was 0.758μW at the load resistor of 260kΩ,the power density is 3.19mW·cm-3·g-2.
出处 《压电与声光》 CAS CSCD 北大核心 2016年第2期203-206,共4页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金资助项目(61340052)
关键词 压电俘能器 雾化沉积 悬臂梁 柔性基底 不锈钢 piezoelectric harvester atomization deposition cantilever flexible substrate stainless steel
  • 相关文献

参考文献13

  • 1LEUNG C S,HAO Weida.Piezoelectric sensors for monitoring airport surface movement-A sustainable airport ground traffic management system[C]//Austria:IEEE Forum on Integrated and Sustainable Transportation Systems Vienna,2011:339-343.
  • 2WANG Q,CAO Z P,KUWANO H.Metal-based piezoelectric energy harvesters by direct deposition of PZT thick films on stainless steel[J].Micro&Letters,2012,7(12):1158-1161.
  • 3LIN Shunchiu,WU Wenjong.Piezoelectric micro energy harvesters based on stainless steel substrates[J].Smart Materials and Structures,2013,22(4):045016.
  • 4SWEE L K.Energy harvesting technologies:thick-film piezoelectric micro generator[J].Sustainable Energy Harvesting Technologies-Past,Present and Future,2011,203:192-214.
  • 5LEE B S,LIN S C,WU W J,et al.Piezoelectric MEMS generators fabricated with aerosol deposition PZT thin film[J].J Micromech Microeng,2009,19:065014.
  • 6WANG D,ROCKS S A,DOREY R A,et al.Electrohydrodynamic atomization deposition of PZ Sol-Gel slurry and sol infiltration on the films[J].Journal of the European Ceramic Society,2012,32:1651-1658.
  • 7CHANG Weitsai,CHEN Yingchung.Design and fabrication of a double-sided piezoeletric transducer for harvesting vibration power[J].Thin Solid Film,2013,529:39-44.
  • 8SHARDRACH J R.Energy scavenging for sensor nodes with a focus on vibration to electricity conversion[D].Berkeley:University of California,2003.
  • 9KIM S G,PRIYA S,ISAKU K.Peizoelectric MEMS for energy harvesting[J].Materials Research Society,2012,37(12):1039-1050.
  • 10SHUN Yingying,WANG Qingming.Characterization of thick film piezoelectric lead zirconate titanate(PZT)ceramics fabricated by tape casting processing[C]//Prague:IEEE International,2013.

二级参考文献13

  • 1TANG G, YANG B, LIU J Q, et al. Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film [J]. Sen- sors and Actuators: A, 2014, 205 (7) : 150 - 155.
  • 2HAN M, YUAN Q, SUN X M, et al. Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications [J]. Journal of Microelectromechanical Systems, 2014, 23 (1): 204-212.
  • 3LIN S C, WU W J. Fabrication of PZT MEMS energy har- vester based on silicon and stainless-steel substrates utilizing an aerosol deposition method [J]. Journal of Micromechanics and Microengineering, 2013, 23 (12) : 1 - 12.
  • 4SUZUKI Y, MIKI D, EDAMOTO M, et al. A MEMS elec- tret generator with electrostatic levitation for vibration-driven energy-harvesting applications [J]. Journal of Micromechanics and Microengineering, 2010, 20 (10): 1- 8.
  • 5KOYAMA D, NAKAMU R K. Electric power generation using vibration of a polyuria piezoelectric thin film [J]. Applied Acoustics, 2010, 71 (5) : 439- 445.
  • 6ERTURK A, RENNO J M, INMAN D J. Modeling of piezo- electric energy harvesting from an L-shaped beam-mass struc- ture with an application to UAVs [J]. Journal of Intelligent Material Systems and Structures, 2009, 20 (5) : 529 - 544.
  • 7LALLART M, GARBUIO L, PETIT L, et al. Double syn- chronized switch harvesting (DSSH) : a new energy harvesting scheme for efficient energy extraction [J]. IEEE Trans Ultra- sonFerroelectricFreqControl, 2008, 55 (10): 2119-2130.
  • 8KIM S B, PARK H, KIM S H, et al. Comparison of MEMS PZT cantilever based on d31 and d33 modes for vibration ener- gy harvesting [J]. Journal of Microelectromechanical Sys- tems, 2012, 22 (1): 26-33.
  • 9JEON Y B, SOOD R, JEONGR J, et al. MEMS power genera- tor with transverse mode thin film PZT [J]. Sensors and Ac- tuators, 2005, 122 (1):16-22.
  • 10JANPHUANG P, LOCKHART R, UFFER N, et al. Vibra- tional piezoelectric energy harvesters based on thinned bulk PZT sheets fabricated at the wafer level [J]. Sensors and Ac- tuators: A, 2014, 210 (10): 1-9.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部