期刊文献+

基于单通道sEMG分解的手部动作识别方法 被引量:14

Classification of Hand Gestures Based on Single-channel s EMG Decomposition
下载PDF
导出
摘要 表面肌电信号(Surface electromyography,s EMG)已广泛应用于手部动作识别。为提高动作识别精度,研究者往往需要采集多个通道s EMG信号,从而增加应用复杂性,针对这一情况,提出一种基于单通道s EMG分解的手部动作识别方法。使用单通道电极采集人体上臂肌肉s EMG,将其分解为6个运动单元动作电位序列,过程包括:二阶差分滤波、阈值计算、尖峰检测、分层聚类;然后,提取绝对值积分、最大值、非零中值、半窗能量等特征,并采用主元分析法降维;最后,利用支持向量机分类识别5种不同手部动作,精度达到80.4%。而采用未融合s EMG分解的传统方法,动作识别精度仅有约70%。 Surface electromyography(s EMG) has been applied extensively in gestures recognition. In order to improve the recognition accuracy, multi-channel s EMG is conventionally sampled, which also increases the complexity of applications. To solve the problem, a novel gesture recognition method based on s EMG decomposition is proposed. Sampling s EMG signals from the muscle of human upper limb by a single-channel electrode; then decomposing the s EMG into six motor unit action potential trains(MUAPTs) and the decomposition process includes 2-order differential filtering, threshold calculation, spike detection and hierarchical clustering. Afterwards, the features, including integral of absolute value, maximum value, median of non-zero value and semi-window energy, are extracted to form a feature matrix, whose dimension is then reduced by the principal component analysis. Finally, support vector machine is employed to recognize five different hand gestures, and 80.4% of accuracy can be obtained, while only about 70% of recognition accuracy can be achieved by traditional methods without s EMG decomposition.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2016年第7期6-13,共8页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划(863计划 2015AA042302) 国家自然科学基金(61273355 61503374 61573340) 机器人学国家重点实验室自主课题(2015-z06)资助项目
关键词 表面肌电信号 运动单元动作电位序列 分层聚类 主元分析支持向量机 sEMG motor unit action potential trains hierarchical clustering principal component analysis support vector machine
  • 相关文献

参考文献27

  • 1熊安斌,赵新刚,韩建达,刘光军.基于混沌理论的面瘫患者表面肌电信号分析[J].科学通报,2013,58(S2):152-165. 被引量:7
  • 2HAP, GROVE L J, SCHEME E J, ENGLEHART K B, et al. Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis[J]. IEEE Trans. Neural Syst. Rehabil. Eng., 2010, 18(1): 49-57.
  • 3ZHANG D, ZHAO X, HAN J, et al. A comparative study on PCA and LDA based EMG pattern recognition for anthropomorphic robotic hand[C]// IEEE International Conference on Robotics and Automation, May 31-June 7, 2014, HongKong, China. NJ: IEEE, 2014. 4850-4855.
  • 4MATSUBARA T, MOR1NOTO J. Bilinear modelling of EMG signals to extract user-independent features for multi-user myoelectric interface[J]. IEEE Trans. Biomed. Eng., 2013, 60(8): 2216-2213.
  • 5杨大鹏,赵京东,李楠,姜力,刘宏.基于预抓取模式识别的假手肌电控制方法[J].机械工程学报,2012,48(15):1-8. 被引量:9
  • 6TKACH D, HUANG H, KUIKEN TA. Study of stability of time-domain features for electromyographic pattern recognition[J]. Journal of Neuro Engineering and Rehabilitation, 2010, 7(21): 1-13.
  • 7BOOSTANI R, MORADI M H. Evaluation of the forearm EMG signal features for the control of a prosthetic hand[J]. Physiological Measurement, 2003, 24: 309-319.
  • 8ENGLEHART K, HUDGIN B, PARKER P A. A wavelet-based continuous classification scheme for mtlltifunction myoelectric control[J]. IEEE Trans. Biomed Eng., 2001, 48(3): 302-311.
  • 9JU Z, OUYANG G, WILAMOWSKA-KORSAK M, et al. Surface EMG based hand manipulation identification via nonlinear feature extraction and classification[J]. IEEE Sensors Journal, 2013, 13(9): 3302-3311.
  • 10SEGIL J, WEIR R. Design and validation of a morphingmyoelectric hand posture controller based on principal component analysis of human grasping[J]. IEEE Trans. Neural Syst. Rehabil. Eng., 2014, 22(2): 249-257.

二级参考文献88

  • 1王鼐,阮炯.心电信号时间序列基于Lyapunov指数谱的主成分聚类分析[J].科学通报,2004,49(20):2122-2127. 被引量:4
  • 2罗志增,杨广映.基于触觉和肌电信号的假手模糊控制方法研究[J].机器人,2006,28(2):224-228. 被引量:8
  • 3季林红,张宇博,王子羲,毕胜.基于自适应Chirplet分解的偏瘫肌强直症状评估[J].清华大学学报(自然科学版),2007,47(5):627-630. 被引量:7
  • 4IBERALL T. Grasp planning for human prehension[J]. Robotics, 1986: 1153-1156.
  • 5VUSKOVIV M I, POZOS A L, POZOS R. Classification of grasp modes based on electromyographic patterns of preshaping motions[C]// IEEE International Conferenceon Systems, Man. and Cybernetics, October 22-25, 1995, Vancouver, BC, Canada: IEEE, 1995: 89-95.
  • 6VUSKOVIC M, SIJIANG D. Classification of prehensile EMG patterns with simplified fuzzy ARTMAP networks[C]// International Joint Conference on Neural Networks, May 12-17, 2002, Honolulu, HI, USA: IEEE, 2002: 2539-2544.
  • 7FERGUSON S, DUNLOP G R. Grasp recognition from myoelectric signals[C]//Proceeding of 2002 Australasian Conference on Robotics and Automation, November 27-29, 2002, Auckland, New Zealand: ARAA, 2002: 83-87.
  • 8TAYLOR C L, SCHWARZ R J. The anatomy and mechanics of the human hand[J]. Artificial Limbs, 1955, 2: 22-35.
  • 9TEAGER H M, TEAGER S M. Evidence for nonlinear sound reduction mechanisms in the vocal tract[J]. Kluwer Acad. Publ, 1990: 241-261.
  • 10LI X, ZHOU P, ARUIN A S. Teager-Kaiser energy operation of surface EMG improves muscle activity onset detection[J]. Annals of Biomedical Engineering, 2007, 35(9): 1532-1538.

共引文献58

同被引文献98

引证文献14

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部