期刊文献+

XFEM计算3D打印PLA材料拉伸试样的裂纹扩展 被引量:18

Crack propagation of PLA 3D printing stretching specimen by means of XFEM
原文传递
导出
摘要 以PLA型3D打印材料为研究对象,通过3D成型的方式制备出拉伸和扭转试验样本,测定了该材料的弹性力学性能。并通过扩展有限元法(XFEM)进行了样本的拉伸断裂性能计算。为评估PLA材料在3D打印件的应用领域提供了相应的断裂参数,同时也为改善3D打印材料力学特性提供了依据。研究结果表明,PLA型3D打印件弹性本构为横贯各向异性;最大拉伸应力为20MPa,拉伸过程中出现的两条裂纹都是以I型和III型裂纹为主,裂纹尖端应力奇异最大值为1.9GPa。 The article focuses on the PLA material of 3Dprinting.The test specimens of the stretching and the torsion test were prepared by means of 3Dprinting.In addition,the tension failure properties of the specimen were calculated using extended finite element method(XFEM),which provides the fracture parameters for assessment of PLA 3Dprinting pieces,and also offers the basis in improving mechanical properties of 3Dprinting materials.The results show that the constitutive model of PLA 3Dprinting material is transverse anisotropy,the maximum tensile stress is 20 MPa,two cracks which formed in tension process are mainly I and III,and the maximum value of crack tip stress singularity is 1.9GPa.
出处 《塑性工程学报》 CAS CSCD 北大核心 2016年第2期136-142,共7页 Journal of Plasticity Engineering
基金 江西省科学院协同创新计划资助项目(014-YYB-170)
关键词 扩展有限元 PLA 3D打印 裂纹扩展 数值计算 XFEM PLA 3D printing crack propagation numerical calculation
  • 相关文献

参考文献13

  • 1T Belytschko,M Tabbara.Dynamic fracture using element-free galerkin methods[J].International Jornal for Numerical Methods in Engineering,1996.39(6):923-938.
  • 2陈明详.弹塑性力学[M].北京:科学出版社,2007.
  • 3T Belystschko,T Black.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering,1999.45(5):601-620.
  • 4N Sukumar,J H Prevost.Modeling quasi-static crack growth with extended finite element method part I:computer implementation[J].International Journal for Solids and Structures,2003.40(11):7513-7537.
  • 5N Sukumar,Z Y Huang,J H Prevost,et al.Partition of unity enrichment for bimaterial interface cracks[J].International Journal for Numerical Methods in Engineering,2004.59(2):1075-1102.
  • 6T Elguedj,A Combescure.Appropriate extended functions for X-FEM simulation of plastic fracture mechanics[J].Computer Methods in Applied Mechanics and Engineering,2006.195(3):501-515.
  • 7J H Song,P M A Areias,T Belytschko.A method for dynamic crack and shear band propagation with phantom nodes[J].International Journal for Numerical Methods in Engineering,2006.67(4):868-893.
  • 8Q L Duan,J H Song,T Menouillard,et al.Element-local level set method for three-dimensional dynamic crack growth[J].International Journal for Numerical Methods in Engineering,2009.80(5):1520-1543.
  • 9J Mergheim,E Kuhl,P Steinmann.A finite element method for the computational modeling of cohesive cracks[J].International Journal for Numerical Methods in Engineering,2005.63(1):276-289.
  • 10A Hansbo,P Hansbo.A finite element method for the simulation of strong and weak discontinuities in elasticity[J].Computer Methods in Applied Mechanics and Engineering,2004.191(5):3523-3540.

共引文献1

同被引文献91

引证文献18

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部