期刊文献+

一种演绎金融数据沙堆演化过程的新方法 被引量:1

A New Method to Interpret Financial Data Sandpile Evolution Process
原文传递
导出
摘要 用递归图方法演绎金融数据的沙堆演化过程是我们为了研究金融数据中所蕴含的沙崩和跃升现象而提出的一种创新方法。该方法基于重构相空间理论,通过对比分析递归图中类分形自相似结构的演化过程与沙堆堆积过程之间的相似性,从直观分析沙堆堆积、滑落及坍塌的特征入手,构建类分形自相似结构的沙堆演化模型,提出了驻留比率、滑落比率及时间间隔的边界点等概念工具,研究金融数据中所蕴含的沙崩和跃升现象。本文重点介绍该方法提出的思路和模型的构建过程,并以上证综合指数为例验证了方法的有效性。 Using recurrence plot to interpret financial data sandpile evolution process is an innovative method to study the sand avalanche and zooming phenomena contained in financial data. Based on the phase-space reconstruction theory and the comparison of the similarities between evolution process of fractal-like self-similar structure and sandpile heaping process in the recurrence plot, this paper starts with intuitive analysis of sandpile heaping, slide and sand avalanche to construct a sandpile evolution model with a fractal-like self-simi- lar structure and puts forward such general tools as lingering ratio, slide ratio, boundary points of time intervals to study the sand avalanche and zooming phenomena contained in fi- nancial data. This article mainly introduces the train of thought and construction process of the model proposed in this method and verifies the effectiveness of this method by taking the Shanghai composite index as an example.
出处 《数量经济技术经济研究》 CSSCI 北大核心 2016年第5期122-142,共21页 Journal of Quantitative & Technological Economics
关键词 递归图 类分形自相似结构 沙堆模型 沙崩 跃升 Financial Market Recurrence Plot Fractal-like Self-similar Structure Sandpile Model Sand Avalanche Zooming
  • 相关文献

参考文献20

  • 1Brock W. A. , Hsieh D. A. , Lebaron B. , 1991, Nonlinear Dynamics, Chaos and Instability. Statistical Theory and Economic Evidence [M], The MIT Press.
  • 2Eekmann J. P. , Oliffson K. S. , Rulle D. , 1987, Recurrence Plots of Dynamical Dystems [J], Europhysics Letters, 4 (9), 973-977.
  • 3Farmer J. D. , Sidorowich J. J. , 1987, Predicting Chaotic Time Series [J], Physical Review Let- ters, 59, 845-848.
  • 4Bastos J. A. , Caiado J. , 2011, Recurrence Quantification Analysis of Global Stock Markets [J], Physica A Statistical Mechanics and Its Applications, 390 (7), 1315-1325.
  • 5Mandelbrot B. , 1982, The Fractal Geometry of nature [M], New York: W. H. Freeman and Company.
  • 6Packard N. H. , Crutchfield J. P., Farmer J.D., Shaw R. S. , 1980, Geometry from A Time Se- ries [J], Physical Review Letters, 45 (9), 712-716.
  • 7Bak P. , Tang C. , Wiesenfeld K. , 1988, Self-organized Criticality [J], Physical Review A, 38 (1), 364-373.
  • 8Peters E. E. , 1994, Fractal Market Analysis [M], New York: Wiley.
  • 9Scheinkman J. A. , Lebaron B. , 1989, Nonlinear Dynamics and Stock Returns [J], Journal of Business, 62 (3), 311-337.
  • 10Takens F., 1981, Detecting Strange Attractors in Turbulence, Lecture Notes in Mathematics [M], Berlin, Heidelberg: Springer.

二级参考文献111

共引文献78

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部